Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the period of the function [tex]\( y = \frac{1}{2} \sin(2x) - 3 \)[/tex], it is important to understand the form and properties of the sine function.
The standard form of the sine function is:
[tex]\[ y = A \sin(Bx - C) + D \][/tex]
where:
- [tex]\( A \)[/tex] is the amplitude,
- [tex]\( B \)[/tex] affects the period,
- [tex]\( C \)[/tex] represents a horizontal shift (phase shift),
- [tex]\( D \)[/tex] represents a vertical shift.
The key parameter that affects the period of the sine function is [tex]\( B \)[/tex]. The period of the sine function is given by:
[tex]\[ \text{Period} = \frac{2\pi}{|B|} \][/tex]
For the function [tex]\( y = \frac{1}{2} \sin(2x) - 3 \)[/tex]:
- Here, [tex]\( A = \frac{1}{2} \)[/tex] (affects amplitude, but not the period),
- [tex]\( B = 2 \)[/tex] (this affects the period),
- [tex]\( C = 0 \)[/tex] (no phase shift),
- [tex]\( D = -3 \)[/tex] (shifts the function vertically, but does not affect the period).
We need to calculate the period using the value [tex]\( B = 2 \)[/tex]:
[tex]\[ \text{Period} = \frac{2\pi}{|2|} = \frac{2\pi}{2} = \pi \][/tex]
Therefore, the period of the function [tex]\( y = \frac{1}{2} \sin(2x) - 3 \)[/tex] is [tex]\(\pi\)[/tex].
Hence, the correct answer is B. [tex]\(\pi\)[/tex].
The standard form of the sine function is:
[tex]\[ y = A \sin(Bx - C) + D \][/tex]
where:
- [tex]\( A \)[/tex] is the amplitude,
- [tex]\( B \)[/tex] affects the period,
- [tex]\( C \)[/tex] represents a horizontal shift (phase shift),
- [tex]\( D \)[/tex] represents a vertical shift.
The key parameter that affects the period of the sine function is [tex]\( B \)[/tex]. The period of the sine function is given by:
[tex]\[ \text{Period} = \frac{2\pi}{|B|} \][/tex]
For the function [tex]\( y = \frac{1}{2} \sin(2x) - 3 \)[/tex]:
- Here, [tex]\( A = \frac{1}{2} \)[/tex] (affects amplitude, but not the period),
- [tex]\( B = 2 \)[/tex] (this affects the period),
- [tex]\( C = 0 \)[/tex] (no phase shift),
- [tex]\( D = -3 \)[/tex] (shifts the function vertically, but does not affect the period).
We need to calculate the period using the value [tex]\( B = 2 \)[/tex]:
[tex]\[ \text{Period} = \frac{2\pi}{|2|} = \frac{2\pi}{2} = \pi \][/tex]
Therefore, the period of the function [tex]\( y = \frac{1}{2} \sin(2x) - 3 \)[/tex] is [tex]\(\pi\)[/tex].
Hence, the correct answer is B. [tex]\(\pi\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.