Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the period of the function [tex]\( y = \frac{1}{2} \sin(2x) - 3 \)[/tex], it is important to understand the form and properties of the sine function.
The standard form of the sine function is:
[tex]\[ y = A \sin(Bx - C) + D \][/tex]
where:
- [tex]\( A \)[/tex] is the amplitude,
- [tex]\( B \)[/tex] affects the period,
- [tex]\( C \)[/tex] represents a horizontal shift (phase shift),
- [tex]\( D \)[/tex] represents a vertical shift.
The key parameter that affects the period of the sine function is [tex]\( B \)[/tex]. The period of the sine function is given by:
[tex]\[ \text{Period} = \frac{2\pi}{|B|} \][/tex]
For the function [tex]\( y = \frac{1}{2} \sin(2x) - 3 \)[/tex]:
- Here, [tex]\( A = \frac{1}{2} \)[/tex] (affects amplitude, but not the period),
- [tex]\( B = 2 \)[/tex] (this affects the period),
- [tex]\( C = 0 \)[/tex] (no phase shift),
- [tex]\( D = -3 \)[/tex] (shifts the function vertically, but does not affect the period).
We need to calculate the period using the value [tex]\( B = 2 \)[/tex]:
[tex]\[ \text{Period} = \frac{2\pi}{|2|} = \frac{2\pi}{2} = \pi \][/tex]
Therefore, the period of the function [tex]\( y = \frac{1}{2} \sin(2x) - 3 \)[/tex] is [tex]\(\pi\)[/tex].
Hence, the correct answer is B. [tex]\(\pi\)[/tex].
The standard form of the sine function is:
[tex]\[ y = A \sin(Bx - C) + D \][/tex]
where:
- [tex]\( A \)[/tex] is the amplitude,
- [tex]\( B \)[/tex] affects the period,
- [tex]\( C \)[/tex] represents a horizontal shift (phase shift),
- [tex]\( D \)[/tex] represents a vertical shift.
The key parameter that affects the period of the sine function is [tex]\( B \)[/tex]. The period of the sine function is given by:
[tex]\[ \text{Period} = \frac{2\pi}{|B|} \][/tex]
For the function [tex]\( y = \frac{1}{2} \sin(2x) - 3 \)[/tex]:
- Here, [tex]\( A = \frac{1}{2} \)[/tex] (affects amplitude, but not the period),
- [tex]\( B = 2 \)[/tex] (this affects the period),
- [tex]\( C = 0 \)[/tex] (no phase shift),
- [tex]\( D = -3 \)[/tex] (shifts the function vertically, but does not affect the period).
We need to calculate the period using the value [tex]\( B = 2 \)[/tex]:
[tex]\[ \text{Period} = \frac{2\pi}{|2|} = \frac{2\pi}{2} = \pi \][/tex]
Therefore, the period of the function [tex]\( y = \frac{1}{2} \sin(2x) - 3 \)[/tex] is [tex]\(\pi\)[/tex].
Hence, the correct answer is B. [tex]\(\pi\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.