Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which of the given expressions are polynomials, let's first recall the definition of a polynomial. A polynomial in one variable [tex]\( x \)[/tex] is an expression of the form:
[tex]\[ a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, \][/tex]
where [tex]\( a_n, a_{n-1}, \ldots, a_1, a_0 \)[/tex] are constants (real numbers) and [tex]\( n \)[/tex] is a non-negative integer. A crucial point is that the exponents of [tex]\( x \)[/tex] should be non-negative integers (0, 1, 2, ...).
Now, let's analyze each given expression:
(i) [tex]\( 2x^2 + 5x + 6 \)[/tex]
- This expression consists of terms with [tex]\( x \)[/tex] raised to the powers of 2, 1, and 0, all of which are non-negative integers.
- Therefore, [tex]\( 2x^2 + 5x + 6 \)[/tex] is a polynomial.
(ii) [tex]\( x^2 + 6x \)[/tex]
- This expression consists of terms with [tex]\( x \)[/tex] raised to the powers of 2 and 1, which are non-negative integers.
- Therefore, [tex]\( x^2 + 6x \)[/tex] is a polynomial.
(iii) [tex]\( \sqrt{2} x^2 + \sqrt{3} x \)[/tex]
- This expression has terms with [tex]\( x \)[/tex] raised to the powers of 2 and 1, which are non-negative integers.
- The coefficients are [tex]\( \sqrt{2} \)[/tex] and [tex]\( \sqrt{3} \)[/tex], which are real numbers.
- Therefore, [tex]\( \sqrt{2} x^2 + \sqrt{3} x \)[/tex] is a polynomial.
(iv) [tex]\( 2x + \frac{1}{x^2} \)[/tex]
- The expression [tex]\( 2x \)[/tex] has [tex]\( x \)[/tex] raised to the power of 1, which is a non-negative integer.
- However, [tex]\( \frac{1}{x^2} \)[/tex] can be written as [tex]\( x^{-2} \)[/tex], where [tex]\(-2\)[/tex] is a negative integer.
- Since [tex]\( x^{-2} \)[/tex] is not a valid exponent for polynomials, [tex]\( 2x + \frac{1}{x^2} \)[/tex] is not a polynomial.
(v) [tex]\( x^2 + \sqrt{2x} + 6 \)[/tex]
- The term [tex]\( x^2 \)[/tex] has [tex]\( x \)[/tex] raised to the power of 2, and [tex]\( 6 \)[/tex] is a constant term.
- However, [tex]\( \sqrt{2x} \)[/tex] can be rewritten as [tex]\( (\sqrt{2} \cdot x^{1/2}) \)[/tex], where [tex]\( 1/2 \)[/tex] is not a non-negative integer.
- Since the exponent [tex]\( x^{1/2} \)[/tex] does not meet the criteria for polynomials, [tex]\( x^2 + \sqrt{2x} + 6 \)[/tex] is not a polynomial.
In summary, the expressions that are polynomials are:
(i) [tex]\( 2x^2 + 5x + 6 \)[/tex]
(ii) [tex]\( x^2 + 6x \)[/tex]
(iii) [tex]\( \sqrt{2} x^2 + \sqrt{3} x \)[/tex]
The expressions that are not polynomials are:
(iv) [tex]\( 2x + \frac{1}{x^2} \)[/tex]
(v) [tex]\( x^2 + \sqrt{2x} + 6 \)[/tex]
[tex]\[ a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, \][/tex]
where [tex]\( a_n, a_{n-1}, \ldots, a_1, a_0 \)[/tex] are constants (real numbers) and [tex]\( n \)[/tex] is a non-negative integer. A crucial point is that the exponents of [tex]\( x \)[/tex] should be non-negative integers (0, 1, 2, ...).
Now, let's analyze each given expression:
(i) [tex]\( 2x^2 + 5x + 6 \)[/tex]
- This expression consists of terms with [tex]\( x \)[/tex] raised to the powers of 2, 1, and 0, all of which are non-negative integers.
- Therefore, [tex]\( 2x^2 + 5x + 6 \)[/tex] is a polynomial.
(ii) [tex]\( x^2 + 6x \)[/tex]
- This expression consists of terms with [tex]\( x \)[/tex] raised to the powers of 2 and 1, which are non-negative integers.
- Therefore, [tex]\( x^2 + 6x \)[/tex] is a polynomial.
(iii) [tex]\( \sqrt{2} x^2 + \sqrt{3} x \)[/tex]
- This expression has terms with [tex]\( x \)[/tex] raised to the powers of 2 and 1, which are non-negative integers.
- The coefficients are [tex]\( \sqrt{2} \)[/tex] and [tex]\( \sqrt{3} \)[/tex], which are real numbers.
- Therefore, [tex]\( \sqrt{2} x^2 + \sqrt{3} x \)[/tex] is a polynomial.
(iv) [tex]\( 2x + \frac{1}{x^2} \)[/tex]
- The expression [tex]\( 2x \)[/tex] has [tex]\( x \)[/tex] raised to the power of 1, which is a non-negative integer.
- However, [tex]\( \frac{1}{x^2} \)[/tex] can be written as [tex]\( x^{-2} \)[/tex], where [tex]\(-2\)[/tex] is a negative integer.
- Since [tex]\( x^{-2} \)[/tex] is not a valid exponent for polynomials, [tex]\( 2x + \frac{1}{x^2} \)[/tex] is not a polynomial.
(v) [tex]\( x^2 + \sqrt{2x} + 6 \)[/tex]
- The term [tex]\( x^2 \)[/tex] has [tex]\( x \)[/tex] raised to the power of 2, and [tex]\( 6 \)[/tex] is a constant term.
- However, [tex]\( \sqrt{2x} \)[/tex] can be rewritten as [tex]\( (\sqrt{2} \cdot x^{1/2}) \)[/tex], where [tex]\( 1/2 \)[/tex] is not a non-negative integer.
- Since the exponent [tex]\( x^{1/2} \)[/tex] does not meet the criteria for polynomials, [tex]\( x^2 + \sqrt{2x} + 6 \)[/tex] is not a polynomial.
In summary, the expressions that are polynomials are:
(i) [tex]\( 2x^2 + 5x + 6 \)[/tex]
(ii) [tex]\( x^2 + 6x \)[/tex]
(iii) [tex]\( \sqrt{2} x^2 + \sqrt{3} x \)[/tex]
The expressions that are not polynomials are:
(iv) [tex]\( 2x + \frac{1}{x^2} \)[/tex]
(v) [tex]\( x^2 + \sqrt{2x} + 6 \)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.