Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's analyze each option step-by-step to determine which one is a polynomial of degree 2:
(a) [tex]\(\sqrt{x} + 6x + 7\)[/tex]
To be classified as a polynomial, the expression should only contain non-negative integer exponents of [tex]\(x\)[/tex]. In this case, the term [tex]\(\sqrt{x}\)[/tex] is equivalent to [tex]\(x^{1/2}\)[/tex], which is not an integer exponent. Thus, this expression is not a polynomial of any degree.
(b) [tex]\(2x^3 + 3x^2 + 1\)[/tex]
A polynomial’s degree is determined by the highest power of [tex]\(x\)[/tex] in the expression. Here, the highest power of [tex]\(x\)[/tex] is 3 (from the term [tex]\(2x^3\)[/tex]). So this is a polynomial, but its degree is 3, not 2.
(c) [tex]\(x^2 + 2x + 1\)[/tex]
Let's check the terms:
- [tex]\(x^2\)[/tex] has a power of 2.
- [tex]\(2x\)[/tex] has a power of 1.
- The constant term 1 has a power of 0.
The highest power of [tex]\(x\)[/tex] is 2 (from the term [tex]\(x^2\)[/tex]). Therefore, this is indeed a polynomial of degree 2.
(d) None of these
This option means that none of the given expressions (a, b, c) would be a polynomial of degree 2. But, as we have already identified, option (c) is a polynomial of degree 2.
Based on this detailed analysis, the correct answer is:
(c) [tex]\(x^2 + 2x + 1\)[/tex]
(a) [tex]\(\sqrt{x} + 6x + 7\)[/tex]
To be classified as a polynomial, the expression should only contain non-negative integer exponents of [tex]\(x\)[/tex]. In this case, the term [tex]\(\sqrt{x}\)[/tex] is equivalent to [tex]\(x^{1/2}\)[/tex], which is not an integer exponent. Thus, this expression is not a polynomial of any degree.
(b) [tex]\(2x^3 + 3x^2 + 1\)[/tex]
A polynomial’s degree is determined by the highest power of [tex]\(x\)[/tex] in the expression. Here, the highest power of [tex]\(x\)[/tex] is 3 (from the term [tex]\(2x^3\)[/tex]). So this is a polynomial, but its degree is 3, not 2.
(c) [tex]\(x^2 + 2x + 1\)[/tex]
Let's check the terms:
- [tex]\(x^2\)[/tex] has a power of 2.
- [tex]\(2x\)[/tex] has a power of 1.
- The constant term 1 has a power of 0.
The highest power of [tex]\(x\)[/tex] is 2 (from the term [tex]\(x^2\)[/tex]). Therefore, this is indeed a polynomial of degree 2.
(d) None of these
This option means that none of the given expressions (a, b, c) would be a polynomial of degree 2. But, as we have already identified, option (c) is a polynomial of degree 2.
Based on this detailed analysis, the correct answer is:
(c) [tex]\(x^2 + 2x + 1\)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.