At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the integral of the function [tex]\(e^{3x}\)[/tex], we apply the integral formula for exponential functions.
Here's a step-by-step solution:
1. Identify the integral to be computed:
[tex]\[ \int e^{3x} \, dx \][/tex]
2. Recall the integral rule for exponential functions:
For a general exponential function [tex]\(e^{ax}\)[/tex], where [tex]\(a\)[/tex] is a constant, the integral is given by:
[tex]\[ \int e^{ax} \, dx = \frac{1}{a} e^{ax} + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
3. Apply the rule to our specific problem:
Here, [tex]\(a = 3\)[/tex]. Therefore, by substituting [tex]\(a = 3\)[/tex] into the formula, we get:
[tex]\[ \int e^{3x} \, dx = \frac{1}{3} e^{3x} + C \][/tex]
4. Write down the final result:
[tex]\[ \int e^{3x} \, dx = \frac{e^{3x}}{3} + C \][/tex]
So the integral of [tex]\( e^{3x} \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\(\frac{e^{3x}}{3} + C\)[/tex].
Here's a step-by-step solution:
1. Identify the integral to be computed:
[tex]\[ \int e^{3x} \, dx \][/tex]
2. Recall the integral rule for exponential functions:
For a general exponential function [tex]\(e^{ax}\)[/tex], where [tex]\(a\)[/tex] is a constant, the integral is given by:
[tex]\[ \int e^{ax} \, dx = \frac{1}{a} e^{ax} + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
3. Apply the rule to our specific problem:
Here, [tex]\(a = 3\)[/tex]. Therefore, by substituting [tex]\(a = 3\)[/tex] into the formula, we get:
[tex]\[ \int e^{3x} \, dx = \frac{1}{3} e^{3x} + C \][/tex]
4. Write down the final result:
[tex]\[ \int e^{3x} \, dx = \frac{e^{3x}}{3} + C \][/tex]
So the integral of [tex]\( e^{3x} \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\(\frac{e^{3x}}{3} + C\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.