Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the integral [tex]\(\int \frac{1}{2x + 1} \, dx\)[/tex], we will follow these steps:
1. Identify the integrand and recognize its form:
We need to find [tex]\(\int \frac{1}{2x + 1} \, dx\)[/tex].
2. Substitute and simplify if necessary:
Notice that the integrand [tex]\(\frac{1}{2x + 1}\)[/tex] has a linear function in the denominator. A common technique for such integrals is to let [tex]\(u = 2x + 1\)[/tex]. This substitution simplifies the integrand.
Let [tex]\( u = 2x + 1 \)[/tex].
3. Differentiate [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{du}{dx} = 2 \implies du = 2 \, dx \implies dx = \frac{du}{2} \][/tex]
4. Rewrite the integral in terms of [tex]\( u \)[/tex]:
Substitute [tex]\( u = 2x + 1 \)[/tex] and [tex]\( dx = \frac{du}{2} \)[/tex] into the integral:
[tex]\[ \int \frac{1}{2x + 1} \, dx = \int \frac{1}{u} \cdot \frac{du}{2} \][/tex]
[tex]\[ = \frac{1}{2} \int \frac{1}{u} \, du \][/tex]
5. Integrate with respect to [tex]\( u \)[/tex]:
The integral of [tex]\(\frac{1}{u}\)[/tex] with respect to [tex]\(u\)[/tex] is [tex]\(\ln|u|\)[/tex] (the natural logarithm of the absolute value of [tex]\( u \)[/tex]):
[tex]\[ \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln|u| + C \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
6. Substitute back [tex]\( u = 2x + 1 \)[/tex]:
Replace [tex]\( u \)[/tex] with [tex]\( 2x + 1 \)[/tex]:
[tex]\[ \frac{1}{2} \ln|u| + C = \frac{1}{2} \ln|2x + 1| + C \][/tex]
7. Simplify the expression:
Since [tex]\( 2x + 1 \)[/tex] is always positive for real values of [tex]\( x \)[/tex] (assuming the domain where it doesn't make the argument negative inside the logarithm), we can drop the absolute value:
[tex]\[ \frac{1}{2} \ln(2x + 1) + C \][/tex]
So, the solution to the integral [tex]\(\int \frac{1}{2x + 1} \, dx\)[/tex] is:
[tex]\[ \boxed{\frac{1}{2} \ln(2x + 1) + C} \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
1. Identify the integrand and recognize its form:
We need to find [tex]\(\int \frac{1}{2x + 1} \, dx\)[/tex].
2. Substitute and simplify if necessary:
Notice that the integrand [tex]\(\frac{1}{2x + 1}\)[/tex] has a linear function in the denominator. A common technique for such integrals is to let [tex]\(u = 2x + 1\)[/tex]. This substitution simplifies the integrand.
Let [tex]\( u = 2x + 1 \)[/tex].
3. Differentiate [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{du}{dx} = 2 \implies du = 2 \, dx \implies dx = \frac{du}{2} \][/tex]
4. Rewrite the integral in terms of [tex]\( u \)[/tex]:
Substitute [tex]\( u = 2x + 1 \)[/tex] and [tex]\( dx = \frac{du}{2} \)[/tex] into the integral:
[tex]\[ \int \frac{1}{2x + 1} \, dx = \int \frac{1}{u} \cdot \frac{du}{2} \][/tex]
[tex]\[ = \frac{1}{2} \int \frac{1}{u} \, du \][/tex]
5. Integrate with respect to [tex]\( u \)[/tex]:
The integral of [tex]\(\frac{1}{u}\)[/tex] with respect to [tex]\(u\)[/tex] is [tex]\(\ln|u|\)[/tex] (the natural logarithm of the absolute value of [tex]\( u \)[/tex]):
[tex]\[ \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln|u| + C \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
6. Substitute back [tex]\( u = 2x + 1 \)[/tex]:
Replace [tex]\( u \)[/tex] with [tex]\( 2x + 1 \)[/tex]:
[tex]\[ \frac{1}{2} \ln|u| + C = \frac{1}{2} \ln|2x + 1| + C \][/tex]
7. Simplify the expression:
Since [tex]\( 2x + 1 \)[/tex] is always positive for real values of [tex]\( x \)[/tex] (assuming the domain where it doesn't make the argument negative inside the logarithm), we can drop the absolute value:
[tex]\[ \frac{1}{2} \ln(2x + 1) + C \][/tex]
So, the solution to the integral [tex]\(\int \frac{1}{2x + 1} \, dx\)[/tex] is:
[tex]\[ \boxed{\frac{1}{2} \ln(2x + 1) + C} \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.