Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To evaluate the integral [tex]\(\int \frac{2x}{x^2 + 1} \, dx\)[/tex], we can follow these steps:
1. Identify the integrand:
The integrand is [tex]\(\frac{2x}{x^2 + 1}\)[/tex].
2. Consider a substitution:
Notice that the derivative of the denominator [tex]\(x^2 + 1\)[/tex] is [tex]\(2x\)[/tex], which appears in the numerator. Let’s use the substitution method:
[tex]\[ u = x^2 + 1 \][/tex]
Then, differentiate both sides with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{d u}{d x} = 2x \implies du = 2x \, dx \][/tex]
Thus, the integral can be rewritten in terms of [tex]\(u\)[/tex]:
[tex]\[ \int \frac{2x}{x^2 + 1} \, dx = \int \frac{1}{u} \, du \][/tex]
3. Integrate with respect to [tex]\(u\)[/tex]:
The integral [tex]\(\int \frac{1}{u} \, du\)[/tex] is a standard integral, which is known to be:
[tex]\[ \int \frac{1}{u} \, du = \ln |u| + C \][/tex]
4. Substitute back [tex]\(u = x^2 + 1\)[/tex]:
Replace [tex]\(u\)[/tex] with [tex]\(x^2 + 1\)[/tex] to get the final answer in terms of [tex]\(x\)[/tex]:
[tex]\[ \int \frac{2x}{x^2 + 1} \, dx = \ln (x^2 + 1) + C \][/tex]
Therefore, the solution to the integral [tex]\(\int \frac{2x}{x^2 + 1} \, dx\)[/tex] is:
[tex]\[ \boxed{\log(x^2 + 1) + C} \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
1. Identify the integrand:
The integrand is [tex]\(\frac{2x}{x^2 + 1}\)[/tex].
2. Consider a substitution:
Notice that the derivative of the denominator [tex]\(x^2 + 1\)[/tex] is [tex]\(2x\)[/tex], which appears in the numerator. Let’s use the substitution method:
[tex]\[ u = x^2 + 1 \][/tex]
Then, differentiate both sides with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{d u}{d x} = 2x \implies du = 2x \, dx \][/tex]
Thus, the integral can be rewritten in terms of [tex]\(u\)[/tex]:
[tex]\[ \int \frac{2x}{x^2 + 1} \, dx = \int \frac{1}{u} \, du \][/tex]
3. Integrate with respect to [tex]\(u\)[/tex]:
The integral [tex]\(\int \frac{1}{u} \, du\)[/tex] is a standard integral, which is known to be:
[tex]\[ \int \frac{1}{u} \, du = \ln |u| + C \][/tex]
4. Substitute back [tex]\(u = x^2 + 1\)[/tex]:
Replace [tex]\(u\)[/tex] with [tex]\(x^2 + 1\)[/tex] to get the final answer in terms of [tex]\(x\)[/tex]:
[tex]\[ \int \frac{2x}{x^2 + 1} \, dx = \ln (x^2 + 1) + C \][/tex]
Therefore, the solution to the integral [tex]\(\int \frac{2x}{x^2 + 1} \, dx\)[/tex] is:
[tex]\[ \boxed{\log(x^2 + 1) + C} \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.