Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Evaluate the integral:

[tex]\[ \int \frac{2x}{x^2 + 1} \, dx \][/tex]

Sagot :

To evaluate the integral [tex]\(\int \frac{2x}{x^2 + 1} \, dx\)[/tex], we can follow these steps:

1. Identify the integrand:
The integrand is [tex]\(\frac{2x}{x^2 + 1}\)[/tex].

2. Consider a substitution:
Notice that the derivative of the denominator [tex]\(x^2 + 1\)[/tex] is [tex]\(2x\)[/tex], which appears in the numerator. Let’s use the substitution method:
[tex]\[ u = x^2 + 1 \][/tex]
Then, differentiate both sides with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{d u}{d x} = 2x \implies du = 2x \, dx \][/tex]
Thus, the integral can be rewritten in terms of [tex]\(u\)[/tex]:
[tex]\[ \int \frac{2x}{x^2 + 1} \, dx = \int \frac{1}{u} \, du \][/tex]

3. Integrate with respect to [tex]\(u\)[/tex]:
The integral [tex]\(\int \frac{1}{u} \, du\)[/tex] is a standard integral, which is known to be:
[tex]\[ \int \frac{1}{u} \, du = \ln |u| + C \][/tex]

4. Substitute back [tex]\(u = x^2 + 1\)[/tex]:
Replace [tex]\(u\)[/tex] with [tex]\(x^2 + 1\)[/tex] to get the final answer in terms of [tex]\(x\)[/tex]:
[tex]\[ \int \frac{2x}{x^2 + 1} \, dx = \ln (x^2 + 1) + C \][/tex]

Therefore, the solution to the integral [tex]\(\int \frac{2x}{x^2 + 1} \, dx\)[/tex] is:
[tex]\[ \boxed{\log(x^2 + 1) + C} \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.