Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To evaluate the integral [tex]\(\int \frac{2x}{x^2 + 1} \, dx\)[/tex], we can follow these steps:
1. Identify the integrand:
The integrand is [tex]\(\frac{2x}{x^2 + 1}\)[/tex].
2. Consider a substitution:
Notice that the derivative of the denominator [tex]\(x^2 + 1\)[/tex] is [tex]\(2x\)[/tex], which appears in the numerator. Let’s use the substitution method:
[tex]\[ u = x^2 + 1 \][/tex]
Then, differentiate both sides with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{d u}{d x} = 2x \implies du = 2x \, dx \][/tex]
Thus, the integral can be rewritten in terms of [tex]\(u\)[/tex]:
[tex]\[ \int \frac{2x}{x^2 + 1} \, dx = \int \frac{1}{u} \, du \][/tex]
3. Integrate with respect to [tex]\(u\)[/tex]:
The integral [tex]\(\int \frac{1}{u} \, du\)[/tex] is a standard integral, which is known to be:
[tex]\[ \int \frac{1}{u} \, du = \ln |u| + C \][/tex]
4. Substitute back [tex]\(u = x^2 + 1\)[/tex]:
Replace [tex]\(u\)[/tex] with [tex]\(x^2 + 1\)[/tex] to get the final answer in terms of [tex]\(x\)[/tex]:
[tex]\[ \int \frac{2x}{x^2 + 1} \, dx = \ln (x^2 + 1) + C \][/tex]
Therefore, the solution to the integral [tex]\(\int \frac{2x}{x^2 + 1} \, dx\)[/tex] is:
[tex]\[ \boxed{\log(x^2 + 1) + C} \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
1. Identify the integrand:
The integrand is [tex]\(\frac{2x}{x^2 + 1}\)[/tex].
2. Consider a substitution:
Notice that the derivative of the denominator [tex]\(x^2 + 1\)[/tex] is [tex]\(2x\)[/tex], which appears in the numerator. Let’s use the substitution method:
[tex]\[ u = x^2 + 1 \][/tex]
Then, differentiate both sides with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{d u}{d x} = 2x \implies du = 2x \, dx \][/tex]
Thus, the integral can be rewritten in terms of [tex]\(u\)[/tex]:
[tex]\[ \int \frac{2x}{x^2 + 1} \, dx = \int \frac{1}{u} \, du \][/tex]
3. Integrate with respect to [tex]\(u\)[/tex]:
The integral [tex]\(\int \frac{1}{u} \, du\)[/tex] is a standard integral, which is known to be:
[tex]\[ \int \frac{1}{u} \, du = \ln |u| + C \][/tex]
4. Substitute back [tex]\(u = x^2 + 1\)[/tex]:
Replace [tex]\(u\)[/tex] with [tex]\(x^2 + 1\)[/tex] to get the final answer in terms of [tex]\(x\)[/tex]:
[tex]\[ \int \frac{2x}{x^2 + 1} \, dx = \ln (x^2 + 1) + C \][/tex]
Therefore, the solution to the integral [tex]\(\int \frac{2x}{x^2 + 1} \, dx\)[/tex] is:
[tex]\[ \boxed{\log(x^2 + 1) + C} \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.