Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
To determine if the given set of points forms a function, we need to check if each input (usually \( x \)-values) corresponds to exactly one output (usually \( y \)-values).
However, the information provided appears somewhat unclear. To evaluate, let's try to interpret it as a set of ordered pairs:
-10, 10
-10, y
-6, a
-2, Q
0, O
4, QQ
6, 8
8, MARK
10, RELATIONSHIP
10, DATA
Given these points, let's list them explicitly as pairs:
\[
(-10, 10), (-10, y), (-6, a), (-2, Q), (0, O), (4, QQ), (6, 8), (8, \text{MARK}), (10, \text{RELATIONSHIP}), (10, \text{DATA})
\]
For this set of points to represent a function, each \( x \)-value must be unique. Here, we notice that the \( x \)-values -10 and 10 each appear more than once. Specifically, the pairs \((-10, 10)\) and \((-10, y)\), as well as \((10, \text{RELATIONSHIP})\) and \((10, \text{DATA})\), have the same \( x \)-values but different \( y \)-values.
This violates the definition of a function, which states that each input should map to exactly one output. Therefore, this set of points does **not** represent a function
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.