Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
To determine if the given set of points forms a function, we need to check if each input (usually \( x \)-values) corresponds to exactly one output (usually \( y \)-values).
However, the information provided appears somewhat unclear. To evaluate, let's try to interpret it as a set of ordered pairs:
-10, 10
-10, y
-6, a
-2, Q
0, O
4, QQ
6, 8
8, MARK
10, RELATIONSHIP
10, DATA
Given these points, let's list them explicitly as pairs:
\[
(-10, 10), (-10, y), (-6, a), (-2, Q), (0, O), (4, QQ), (6, 8), (8, \text{MARK}), (10, \text{RELATIONSHIP}), (10, \text{DATA})
\]
For this set of points to represent a function, each \( x \)-value must be unique. Here, we notice that the \( x \)-values -10 and 10 each appear more than once. Specifically, the pairs \((-10, 10)\) and \((-10, y)\), as well as \((10, \text{RELATIONSHIP})\) and \((10, \text{DATA})\), have the same \( x \)-values but different \( y \)-values.
This violates the definition of a function, which states that each input should map to exactly one output. Therefore, this set of points does **not** represent a function
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.