Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Evaluate the integral:
[tex]\[
\int \frac{\cos(x)}{\sin^2(x) + 1} \, dx
\][/tex]


Sagot :

To solve the integral [tex]\( \int \frac{\cos (x)}{\sin ^2(x)+1} \, d x \)[/tex], let's proceed step-by-step.

1. Substitution:
Notice that the denominator [tex]\(\sin^2(x) + 1\)[/tex] suggests that we can use the trigonometric identity:
[tex]\[ \sin^2(x) + 1 = (\sin(x))^2 + 1 \][/tex]
To simplify the integral, we can use a substitution. Let:
[tex]\[ u = \sin(x) \][/tex]
Then, the derivative of [tex]\(u\)[/tex] with respect to [tex]\(x\)[/tex] is:
[tex]\[ \frac{du}{dx} = \cos(x) \implies du = \cos(x) \, dx \][/tex]

2. Rewrite the Integral:
Substitute [tex]\(u\)[/tex] and [tex]\(du\)[/tex] into the integral:
[tex]\[ \int \frac{\cos (x)}{\sin ^2(x)+1} \, dx = \int \frac{\cos (x)}{u^2 + 1} \, dx \][/tex]
Since [tex]\(\cos(x) \, dx = du\)[/tex], we can further simplify the integral to:
[tex]\[ \int \frac{1}{u^2 + 1} \, du \][/tex]

3. Integrate:
The integral [tex]\( \int \frac{1}{u^2 + 1} \, du \)[/tex] is a standard integral which is known to be the arctangent function:
[tex]\[ \int \frac{1}{u^2 + 1} \, du = \arctan(u) + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.

4. Back Substitution:
Recall that [tex]\(u = \sin(x)\)[/tex], so we substitute back [tex]\(u\)[/tex] into the result:
[tex]\[ \arctan(u) + C = \arctan(\sin(x)) + C \][/tex]

Thus, the integral
[tex]\[ \int \frac{\cos (x)}{\sin ^2(x)+1} \, d x = \arctan(\sin(x)) + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.