Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Evaluate the integral:
[tex]\[
\int \frac{\cos(x)}{\sin^2(x) + 1} \, dx
\][/tex]


Sagot :

To solve the integral [tex]\( \int \frac{\cos (x)}{\sin ^2(x)+1} \, d x \)[/tex], let's proceed step-by-step.

1. Substitution:
Notice that the denominator [tex]\(\sin^2(x) + 1\)[/tex] suggests that we can use the trigonometric identity:
[tex]\[ \sin^2(x) + 1 = (\sin(x))^2 + 1 \][/tex]
To simplify the integral, we can use a substitution. Let:
[tex]\[ u = \sin(x) \][/tex]
Then, the derivative of [tex]\(u\)[/tex] with respect to [tex]\(x\)[/tex] is:
[tex]\[ \frac{du}{dx} = \cos(x) \implies du = \cos(x) \, dx \][/tex]

2. Rewrite the Integral:
Substitute [tex]\(u\)[/tex] and [tex]\(du\)[/tex] into the integral:
[tex]\[ \int \frac{\cos (x)}{\sin ^2(x)+1} \, dx = \int \frac{\cos (x)}{u^2 + 1} \, dx \][/tex]
Since [tex]\(\cos(x) \, dx = du\)[/tex], we can further simplify the integral to:
[tex]\[ \int \frac{1}{u^2 + 1} \, du \][/tex]

3. Integrate:
The integral [tex]\( \int \frac{1}{u^2 + 1} \, du \)[/tex] is a standard integral which is known to be the arctangent function:
[tex]\[ \int \frac{1}{u^2 + 1} \, du = \arctan(u) + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.

4. Back Substitution:
Recall that [tex]\(u = \sin(x)\)[/tex], so we substitute back [tex]\(u\)[/tex] into the result:
[tex]\[ \arctan(u) + C = \arctan(\sin(x)) + C \][/tex]

Thus, the integral
[tex]\[ \int \frac{\cos (x)}{\sin ^2(x)+1} \, d x = \arctan(\sin(x)) + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.