Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Evaluate the integral:
[tex]\[ \int \frac{1}{x \ln(x)} \, dx \][/tex]


Sagot :

To solve the integral [tex]\(\int \frac{1}{x \ln (x)} \, dx\)[/tex], let's proceed step-by-step:

1. Substitution:
We start by making a substitution that can simplify the integrand. Let:
[tex]\[ u = \ln(x) \][/tex]
Then, the differential [tex]\(du\)[/tex] can be found by differentiating both sides with respect to [tex]\(x\)[/tex]:
[tex]\[ du = \frac{1}{x} \, dx \quad \text{or} \quad dx = x \, du \][/tex]
Since [tex]\(u = \ln(x)\)[/tex], we can rewrite [tex]\(dx\)[/tex] in terms of [tex]\(u\)[/tex] as:
[tex]\[ dx = x \, du = e^u \, du \][/tex]
Here, we have used the fact that [tex]\(x = e^u\)[/tex].

2. Rewrite the integral:
Now, substitute [tex]\(u\)[/tex] and [tex]\(dx\)[/tex] into the integral:
[tex]\[ \int \frac{1}{x \ln(x)} \, dx = \int \frac{1}{e^u \cdot u} \cdot e^u \, du \][/tex]
Notice that the [tex]\(e^u\)[/tex] terms cancel out:
[tex]\[ \int \frac{1}{u} \, du \][/tex]

3. Integrate:
The integral now is in a simpler form:
[tex]\[ \int \frac{1}{u} \, du = \ln|u| + C \][/tex]
Since [tex]\(u = \ln(x)\)[/tex], substitute back:
[tex]\[ \ln|\ln(x)| + C \][/tex]
Given that [tex]\(\ln(x)\)[/tex] is positive for [tex]\(x > 1\)[/tex], we can drop the absolute value for simplicity:
[tex]\[ \ln(\ln(x)) + C \][/tex]

Thus, the solution to the integral [tex]\(\int \frac{1}{x \ln(x)} \, dx\)[/tex] is:
[tex]\[ \boxed{\ln (\ln (x)) + C} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.