Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the integral [tex]\(\int \frac{1}{x \ln (x)} \, dx\)[/tex], let's proceed step-by-step:
1. Substitution:
We start by making a substitution that can simplify the integrand. Let:
[tex]\[ u = \ln(x) \][/tex]
Then, the differential [tex]\(du\)[/tex] can be found by differentiating both sides with respect to [tex]\(x\)[/tex]:
[tex]\[ du = \frac{1}{x} \, dx \quad \text{or} \quad dx = x \, du \][/tex]
Since [tex]\(u = \ln(x)\)[/tex], we can rewrite [tex]\(dx\)[/tex] in terms of [tex]\(u\)[/tex] as:
[tex]\[ dx = x \, du = e^u \, du \][/tex]
Here, we have used the fact that [tex]\(x = e^u\)[/tex].
2. Rewrite the integral:
Now, substitute [tex]\(u\)[/tex] and [tex]\(dx\)[/tex] into the integral:
[tex]\[ \int \frac{1}{x \ln(x)} \, dx = \int \frac{1}{e^u \cdot u} \cdot e^u \, du \][/tex]
Notice that the [tex]\(e^u\)[/tex] terms cancel out:
[tex]\[ \int \frac{1}{u} \, du \][/tex]
3. Integrate:
The integral now is in a simpler form:
[tex]\[ \int \frac{1}{u} \, du = \ln|u| + C \][/tex]
Since [tex]\(u = \ln(x)\)[/tex], substitute back:
[tex]\[ \ln|\ln(x)| + C \][/tex]
Given that [tex]\(\ln(x)\)[/tex] is positive for [tex]\(x > 1\)[/tex], we can drop the absolute value for simplicity:
[tex]\[ \ln(\ln(x)) + C \][/tex]
Thus, the solution to the integral [tex]\(\int \frac{1}{x \ln(x)} \, dx\)[/tex] is:
[tex]\[ \boxed{\ln (\ln (x)) + C} \][/tex]
1. Substitution:
We start by making a substitution that can simplify the integrand. Let:
[tex]\[ u = \ln(x) \][/tex]
Then, the differential [tex]\(du\)[/tex] can be found by differentiating both sides with respect to [tex]\(x\)[/tex]:
[tex]\[ du = \frac{1}{x} \, dx \quad \text{or} \quad dx = x \, du \][/tex]
Since [tex]\(u = \ln(x)\)[/tex], we can rewrite [tex]\(dx\)[/tex] in terms of [tex]\(u\)[/tex] as:
[tex]\[ dx = x \, du = e^u \, du \][/tex]
Here, we have used the fact that [tex]\(x = e^u\)[/tex].
2. Rewrite the integral:
Now, substitute [tex]\(u\)[/tex] and [tex]\(dx\)[/tex] into the integral:
[tex]\[ \int \frac{1}{x \ln(x)} \, dx = \int \frac{1}{e^u \cdot u} \cdot e^u \, du \][/tex]
Notice that the [tex]\(e^u\)[/tex] terms cancel out:
[tex]\[ \int \frac{1}{u} \, du \][/tex]
3. Integrate:
The integral now is in a simpler form:
[tex]\[ \int \frac{1}{u} \, du = \ln|u| + C \][/tex]
Since [tex]\(u = \ln(x)\)[/tex], substitute back:
[tex]\[ \ln|\ln(x)| + C \][/tex]
Given that [tex]\(\ln(x)\)[/tex] is positive for [tex]\(x > 1\)[/tex], we can drop the absolute value for simplicity:
[tex]\[ \ln(\ln(x)) + C \][/tex]
Thus, the solution to the integral [tex]\(\int \frac{1}{x \ln(x)} \, dx\)[/tex] is:
[tex]\[ \boxed{\ln (\ln (x)) + C} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.