Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the integral [tex]\(\int \frac{1}{x \ln (x)} \, dx\)[/tex], let's proceed step-by-step:
1. Substitution:
We start by making a substitution that can simplify the integrand. Let:
[tex]\[ u = \ln(x) \][/tex]
Then, the differential [tex]\(du\)[/tex] can be found by differentiating both sides with respect to [tex]\(x\)[/tex]:
[tex]\[ du = \frac{1}{x} \, dx \quad \text{or} \quad dx = x \, du \][/tex]
Since [tex]\(u = \ln(x)\)[/tex], we can rewrite [tex]\(dx\)[/tex] in terms of [tex]\(u\)[/tex] as:
[tex]\[ dx = x \, du = e^u \, du \][/tex]
Here, we have used the fact that [tex]\(x = e^u\)[/tex].
2. Rewrite the integral:
Now, substitute [tex]\(u\)[/tex] and [tex]\(dx\)[/tex] into the integral:
[tex]\[ \int \frac{1}{x \ln(x)} \, dx = \int \frac{1}{e^u \cdot u} \cdot e^u \, du \][/tex]
Notice that the [tex]\(e^u\)[/tex] terms cancel out:
[tex]\[ \int \frac{1}{u} \, du \][/tex]
3. Integrate:
The integral now is in a simpler form:
[tex]\[ \int \frac{1}{u} \, du = \ln|u| + C \][/tex]
Since [tex]\(u = \ln(x)\)[/tex], substitute back:
[tex]\[ \ln|\ln(x)| + C \][/tex]
Given that [tex]\(\ln(x)\)[/tex] is positive for [tex]\(x > 1\)[/tex], we can drop the absolute value for simplicity:
[tex]\[ \ln(\ln(x)) + C \][/tex]
Thus, the solution to the integral [tex]\(\int \frac{1}{x \ln(x)} \, dx\)[/tex] is:
[tex]\[ \boxed{\ln (\ln (x)) + C} \][/tex]
1. Substitution:
We start by making a substitution that can simplify the integrand. Let:
[tex]\[ u = \ln(x) \][/tex]
Then, the differential [tex]\(du\)[/tex] can be found by differentiating both sides with respect to [tex]\(x\)[/tex]:
[tex]\[ du = \frac{1}{x} \, dx \quad \text{or} \quad dx = x \, du \][/tex]
Since [tex]\(u = \ln(x)\)[/tex], we can rewrite [tex]\(dx\)[/tex] in terms of [tex]\(u\)[/tex] as:
[tex]\[ dx = x \, du = e^u \, du \][/tex]
Here, we have used the fact that [tex]\(x = e^u\)[/tex].
2. Rewrite the integral:
Now, substitute [tex]\(u\)[/tex] and [tex]\(dx\)[/tex] into the integral:
[tex]\[ \int \frac{1}{x \ln(x)} \, dx = \int \frac{1}{e^u \cdot u} \cdot e^u \, du \][/tex]
Notice that the [tex]\(e^u\)[/tex] terms cancel out:
[tex]\[ \int \frac{1}{u} \, du \][/tex]
3. Integrate:
The integral now is in a simpler form:
[tex]\[ \int \frac{1}{u} \, du = \ln|u| + C \][/tex]
Since [tex]\(u = \ln(x)\)[/tex], substitute back:
[tex]\[ \ln|\ln(x)| + C \][/tex]
Given that [tex]\(\ln(x)\)[/tex] is positive for [tex]\(x > 1\)[/tex], we can drop the absolute value for simplicity:
[tex]\[ \ln(\ln(x)) + C \][/tex]
Thus, the solution to the integral [tex]\(\int \frac{1}{x \ln(x)} \, dx\)[/tex] is:
[tex]\[ \boxed{\ln (\ln (x)) + C} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.