Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
Given the equation:
\(\frac{XYZ][8] = \frac{ZY][8]\)
We are asked to find the three-digit number XYZ where X, Y, and Z are different non-zero digits.
To solve this, we can express the fractions as decimal numbers:
\(\frac{XYZ][8] = \frac{ZY][8] \Rightarrow 100X + 10Y + Z = 10Z + Y
From the equation above, we can simplify it to:
\(100X + 10Y + Z = 10Z + Y\)
Rearranging the terms gives us: \(100X +9Y = 9Z\)
Given that X, Y, and Z are different non-zero digits, we can start by trying different combinations to find a suitable solution.
Let's explore a possible solution:
If X = 1, Y = 2, and Z = 3:
Plugging these values into the equation gives us:
\(100(1) +9(2) = 9(3)\)
\(100 + 18 = 27)
\(118 \neq 27)
Therefore, the solution X = 1, Y = 2, and Z = 3 is not valid.
Continue exploring different combinations until you find the correct values for X, Y, and Z that satisfy the equation.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.