Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which of the following values is an asymptote of [tex]\( y = \csc(x) \)[/tex], we must consider the behavior of [tex]\( y = \csc(x) \)[/tex], which is defined as [tex]\( \csc(x) = \frac{1}{\sin(x)} \)[/tex]. For [tex]\( y = \csc(x) \)[/tex] to have a vertical asymptote, the denominator [tex]\(\sin(x)\)[/tex] must be equal to zero since the cosecant function is undefined when [tex]\(\sin(x) = 0\)[/tex].
The sine function, [tex]\(\sin(x)\)[/tex], equals zero at integer multiples of [tex]\(\pi\)[/tex]:
[tex]\[ x = k\pi \quad \text{where } k \text{ is an integer} \][/tex]
Now, let's check each given value to see if [tex]\(\sin(x) = 0\)[/tex]:
1. [tex]\( x = -\pi \)[/tex]
[tex]\[ \sin(-\pi) = 0 \][/tex]
Since [tex]\(\sin(-\pi) = 0\)[/tex], there is a vertical asymptote at [tex]\( x = -\pi \)[/tex].
2. [tex]\( x = -\frac{\pi}{3} \)[/tex]
[tex]\[ \sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2} \][/tex]
Since [tex]\(\sin\left(-\frac{\pi}{3}\right) \neq 0\)[/tex], there is no vertical asymptote at [tex]\( x = -\frac{\pi}{3} \)[/tex].
3. [tex]\( x = \frac{\pi}{4} \)[/tex]
[tex]\[ \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
Since [tex]\(\sin\left(\frac{\pi}{4}\right) \neq 0\)[/tex], there is no vertical asymptote at [tex]\( x = \frac{\pi}{4} \)[/tex].
4. [tex]\( x = \frac{\pi}{2} \)[/tex]
[tex]\[ \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
Since [tex]\(\sin\left(\frac{\pi}{2}\right) \neq 0\)[/tex], there is no vertical asymptote at [tex]\( x = \frac{\pi}{2} \)[/tex].
Based on our analysis, the only value among the options given that corresponds to a vertical asymptote for [tex]\( y = \csc(x) \)[/tex] is:
[tex]\[ x = -\pi \][/tex]
The sine function, [tex]\(\sin(x)\)[/tex], equals zero at integer multiples of [tex]\(\pi\)[/tex]:
[tex]\[ x = k\pi \quad \text{where } k \text{ is an integer} \][/tex]
Now, let's check each given value to see if [tex]\(\sin(x) = 0\)[/tex]:
1. [tex]\( x = -\pi \)[/tex]
[tex]\[ \sin(-\pi) = 0 \][/tex]
Since [tex]\(\sin(-\pi) = 0\)[/tex], there is a vertical asymptote at [tex]\( x = -\pi \)[/tex].
2. [tex]\( x = -\frac{\pi}{3} \)[/tex]
[tex]\[ \sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2} \][/tex]
Since [tex]\(\sin\left(-\frac{\pi}{3}\right) \neq 0\)[/tex], there is no vertical asymptote at [tex]\( x = -\frac{\pi}{3} \)[/tex].
3. [tex]\( x = \frac{\pi}{4} \)[/tex]
[tex]\[ \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
Since [tex]\(\sin\left(\frac{\pi}{4}\right) \neq 0\)[/tex], there is no vertical asymptote at [tex]\( x = \frac{\pi}{4} \)[/tex].
4. [tex]\( x = \frac{\pi}{2} \)[/tex]
[tex]\[ \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
Since [tex]\(\sin\left(\frac{\pi}{2}\right) \neq 0\)[/tex], there is no vertical asymptote at [tex]\( x = \frac{\pi}{2} \)[/tex].
Based on our analysis, the only value among the options given that corresponds to a vertical asymptote for [tex]\( y = \csc(x) \)[/tex] is:
[tex]\[ x = -\pi \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.