Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Q 28/30

A poll was taken among 10,000 people working in Bangalore. The aim was to see what their annual salaries were.

\begin{tabular}{|l|c|}
\hline Annual Salary & Number of people \\
\hline Less than ₹ 40,000 & 200 \\
\hline ₹ 40,001 to ₹ 75,000 & 880 \\
\hline ₹ 75,001 to ₹ 150,000 & 1,080 \\
\hline ₹ 150,001 to ₹ 250,000 & 3,136 \\
\hline More than ₹ 250,000 & 4,704 \\
\hline
\end{tabular}

If you choose a person at random from this group, what is the probability that he or she earns more than ₹ 40,000 annually?


Sagot :

To determine the probability that a randomly selected person from this group earns more than ₹ 40000 annually, we can proceed with the following steps:

1. Identify the total number of people surveyed:
According to the poll data, the total number of people surveyed is 10,000.

2. Determine the number of people earning more than ₹ 40000 annually:
From the given data, individuals earning more than ₹ 40000 are distributed over three salary brackets:
- ₹ 40001 to ₹ 75000: 880 people
- ₹ 75001 to ₹ 150000: 1080 people
- ₹ 150001 to ₹ 250000: 3136 people
- More than ₹ 250000: 4704 people

By adding these numbers, the total number of people earning more than ₹ 40000 is:
[tex]\[ 880 + 1080 + 3136 + 4704 = 9800 \][/tex]

3. Calculate the probability:
The probability that a randomly selected person earns more than ₹ 40000 annually is the ratio of the number of people earning more than ₹ 40000 to the total number of people surveyed.

Thus, the probability [tex]\( P \)[/tex] is given by:
[tex]\[ P = \frac{\text{Number of people earning more than } ₹ 40000}{\text{Total number of people}} \][/tex]

Substituting the numbers, we get:
[tex]\[ P = \frac{9800}{10000} = 0.98 \][/tex]

Therefore, the probability that a randomly chosen person from this survey group earns more than ₹ 40000 annually is 0.98.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.