Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

A stone is dropped from the edge of a roof.

(a) How long does it take to fall [tex]4.9 \, \text{m}[/tex]?
(b) How fast does it move at the end of that fall?
(c) What will be its acceleration after 3 seconds?

Sagot :

Certainly! Let's work through this step-by-step:

### Part (a):

To find the time it takes for the stone to fall 4.9 meters, we use the kinematic equation for objects in free fall:

[tex]\[ h = \frac{1}{2} g t^2 \][/tex]

where:
- [tex]\( h \)[/tex] is the height (4.9 meters),
- [tex]\( g \)[/tex] is the acceleration due to gravity (9.8 m/s²),
- [tex]\( t \)[/tex] is the time in seconds.

Rearranging to solve for [tex]\( t \)[/tex]:

[tex]\[ t = \sqrt{\frac{2h}{g}} \][/tex]

Substitute the known values:

[tex]\[ t = \sqrt{\frac{2 \cdot 4.9 \, \text{m}}{9.8 \, \text{m/s}^2}} \][/tex]

[tex]\[ t = \sqrt{\frac{9.8 \, \text{m}}{9.8 \, \text{m/s}^2}} \][/tex]

[tex]\[ t = \sqrt{1} \][/tex]

[tex]\[ t = 1 \, \text{s} \][/tex]

So, it takes [tex]\( 1 \)[/tex] second for the stone to fall 4.9 meters.

### Part (b):

Next, we want to find the velocity of the stone at the end of the fall. The velocity of an object falling from rest under gravity can be found using:

[tex]\[ v = g t \][/tex]

where:
- [tex]\( v \)[/tex] is the velocity,
- [tex]\( g \)[/tex] is the acceleration due to gravity (9.8 m/s²),
- [tex]\( t \)[/tex] is the time in seconds (from part a, [tex]\( t = 1 \)[/tex] second).

Substitute the known values:

[tex]\[ v = 9.8 \, \text{m/s}^2 \cdot 1 \, \text{s} \][/tex]

[tex]\[ v = 9.8 \, \text{m/s} \][/tex]

So, the stone moves at [tex]\( 9.8 \, \text{m/s} \)[/tex] at the end of the fall.

### Part (c):

Finally, to determine the acceleration of the stone after 3 seconds, we recognize that the only force acting on the stone is gravity (assuming no air resistance). The acceleration due to gravity is constant.

Thus, the acceleration [tex]\( a \)[/tex] after any amount of time, including 3 seconds, remains:

[tex]\[ a = 9.8 \, \text{m/s}^2 \][/tex]

So, the acceleration of the stone after 3 seconds is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].

### Summary:

(a) The time to fall 4.9 meters: [tex]\( 1 \)[/tex] second

(b) The velocity at the end of that fall: [tex]\( 9.8 \, \text{m/s} \)[/tex]

(c) The acceleration after 3 seconds: [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]