Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Alright, let's find the H.C.F. (Highest Common Factor) of the expressions [tex]\(4 P^3 q^2\)[/tex] and [tex]\(10 P^2 q^3\)[/tex].
### Step-by-Step Solution
1. Identify the Numerical Coefficients:
- The numerical coefficients of the given expressions are [tex]\(4\)[/tex] and [tex]\(10\)[/tex].
2. Find the GCD of the Numerical Coefficients:
- The greatest common divisor (GCD) of [tex]\(4\)[/tex] and [tex]\(10\)[/tex] is [tex]\(2\)[/tex].
3. Examine the Variables and Their Powers:
- For the variable [tex]\(P\)[/tex]:
- In the first expression, [tex]\(P\)[/tex] is raised to the power [tex]\(3\)[/tex] (i.e., [tex]\(P^3\)[/tex]).
- In the second expression, [tex]\(P\)[/tex] is raised to the power [tex]\(2\)[/tex] (i.e., [tex]\(P^2\)[/tex]).
- The minimum power of [tex]\(P\)[/tex] in these expressions is [tex]\(2\)[/tex].
- For the variable [tex]\(q\)[/tex]:
- In the first expression, [tex]\(q\)[/tex] is raised to the power [tex]\(2\)[/tex] (i.e., [tex]\(q^2\)[/tex]).
- In the second expression, [tex]\(q\)[/tex] is raised to the power [tex]\(3\)[/tex] (i.e., [tex]\(q^3\)[/tex]).
- The minimum power of [tex]\(q\)[/tex] in these expressions is [tex]\(2\)[/tex].
4. Combine the GCD of the Numerical Coefficients with the Minimum Powers of the Variables:
- The H.C.F. will be the product of the GCD of the numerical coefficients and the variables raised to their minimum powers.
- Hence, the H.C.F. is [tex]\(2 \cdot P^2 \cdot q^2\)[/tex].
Thus, the H.C.F. of the expressions [tex]\(4 P^3 q^2\)[/tex] and [tex]\(10 P^2 q^3\)[/tex] is [tex]\(2 P^2 q^2\)[/tex].
### Conclusion
Among the given choices, the correct one is:
[tex]\[ \text{d) } 2 P^2 q^2 \][/tex]
### Step-by-Step Solution
1. Identify the Numerical Coefficients:
- The numerical coefficients of the given expressions are [tex]\(4\)[/tex] and [tex]\(10\)[/tex].
2. Find the GCD of the Numerical Coefficients:
- The greatest common divisor (GCD) of [tex]\(4\)[/tex] and [tex]\(10\)[/tex] is [tex]\(2\)[/tex].
3. Examine the Variables and Their Powers:
- For the variable [tex]\(P\)[/tex]:
- In the first expression, [tex]\(P\)[/tex] is raised to the power [tex]\(3\)[/tex] (i.e., [tex]\(P^3\)[/tex]).
- In the second expression, [tex]\(P\)[/tex] is raised to the power [tex]\(2\)[/tex] (i.e., [tex]\(P^2\)[/tex]).
- The minimum power of [tex]\(P\)[/tex] in these expressions is [tex]\(2\)[/tex].
- For the variable [tex]\(q\)[/tex]:
- In the first expression, [tex]\(q\)[/tex] is raised to the power [tex]\(2\)[/tex] (i.e., [tex]\(q^2\)[/tex]).
- In the second expression, [tex]\(q\)[/tex] is raised to the power [tex]\(3\)[/tex] (i.e., [tex]\(q^3\)[/tex]).
- The minimum power of [tex]\(q\)[/tex] in these expressions is [tex]\(2\)[/tex].
4. Combine the GCD of the Numerical Coefficients with the Minimum Powers of the Variables:
- The H.C.F. will be the product of the GCD of the numerical coefficients and the variables raised to their minimum powers.
- Hence, the H.C.F. is [tex]\(2 \cdot P^2 \cdot q^2\)[/tex].
Thus, the H.C.F. of the expressions [tex]\(4 P^3 q^2\)[/tex] and [tex]\(10 P^2 q^3\)[/tex] is [tex]\(2 P^2 q^2\)[/tex].
### Conclusion
Among the given choices, the correct one is:
[tex]\[ \text{d) } 2 P^2 q^2 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.