Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To simplify the expression, [tex]\(2x^2 + y^2 + 2z^2 - 2\sqrt{2}xy + 2\sqrt{2}yz - 4xz\)[/tex], let’s follow these steps systematically:
1. Identify and group terms:
The expression contains several quadratic and mixed terms. We first list them:
[tex]\[ 2x^2 + y^2 + 2z^2 - 2\sqrt{2}xy + 2\sqrt{2}yz - 4xz \][/tex]
2. Combine like terms:
Although the terms [tex]\(2x^2, y^2, 2z^2\)[/tex] are already simplified, the mixed terms [tex]\( -2\sqrt{2}xy, 2\sqrt{2}yz, -4xz\)[/tex] need to be considered for further simplification.
3. Examine terms with similar factors:
Notice how the mixed terms involve combinations of [tex]\(x, y,\)[/tex] and [tex]\(z\)[/tex]. Let's handle them carefully:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 4xz + y^2 + 2\sqrt{2}yz + 2z^2 \][/tex]
4. Rewrite the expression:
No additional combination directly simplifies these mixed terms. This means the expression doesn't reduce further by conventional algebraic methods without additional context.
Ultimately, the expression [tex]\(2x^2 + y^2 + 2z^2 - 2\sqrt{2}xy + 2\sqrt{2}yz - 4xz\)[/tex] simplifies to:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 4xz + y^2 + 2\sqrt{2}yz + 2z^2 \][/tex]
This step-by-step approach clarifies how the initial terms combine directly into the final simplified form.
1. Identify and group terms:
The expression contains several quadratic and mixed terms. We first list them:
[tex]\[ 2x^2 + y^2 + 2z^2 - 2\sqrt{2}xy + 2\sqrt{2}yz - 4xz \][/tex]
2. Combine like terms:
Although the terms [tex]\(2x^2, y^2, 2z^2\)[/tex] are already simplified, the mixed terms [tex]\( -2\sqrt{2}xy, 2\sqrt{2}yz, -4xz\)[/tex] need to be considered for further simplification.
3. Examine terms with similar factors:
Notice how the mixed terms involve combinations of [tex]\(x, y,\)[/tex] and [tex]\(z\)[/tex]. Let's handle them carefully:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 4xz + y^2 + 2\sqrt{2}yz + 2z^2 \][/tex]
4. Rewrite the expression:
No additional combination directly simplifies these mixed terms. This means the expression doesn't reduce further by conventional algebraic methods without additional context.
Ultimately, the expression [tex]\(2x^2 + y^2 + 2z^2 - 2\sqrt{2}xy + 2\sqrt{2}yz - 4xz\)[/tex] simplifies to:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 4xz + y^2 + 2\sqrt{2}yz + 2z^2 \][/tex]
This step-by-step approach clarifies how the initial terms combine directly into the final simplified form.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.