Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Simplify the expression:
[tex]\[ 2x^2 + y^2 + 2z^2 - 2\sqrt{2}xy + 2\sqrt{2y}z - 4xz \][/tex]


Sagot :

To simplify the expression, [tex]\(2x^2 + y^2 + 2z^2 - 2\sqrt{2}xy + 2\sqrt{2}yz - 4xz\)[/tex], let’s follow these steps systematically:

1. Identify and group terms:
The expression contains several quadratic and mixed terms. We first list them:
[tex]\[ 2x^2 + y^2 + 2z^2 - 2\sqrt{2}xy + 2\sqrt{2}yz - 4xz \][/tex]

2. Combine like terms:
Although the terms [tex]\(2x^2, y^2, 2z^2\)[/tex] are already simplified, the mixed terms [tex]\( -2\sqrt{2}xy, 2\sqrt{2}yz, -4xz\)[/tex] need to be considered for further simplification.

3. Examine terms with similar factors:
Notice how the mixed terms involve combinations of [tex]\(x, y,\)[/tex] and [tex]\(z\)[/tex]. Let's handle them carefully:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 4xz + y^2 + 2\sqrt{2}yz + 2z^2 \][/tex]

4. Rewrite the expression:
No additional combination directly simplifies these mixed terms. This means the expression doesn't reduce further by conventional algebraic methods without additional context.

Ultimately, the expression [tex]\(2x^2 + y^2 + 2z^2 - 2\sqrt{2}xy + 2\sqrt{2}yz - 4xz\)[/tex] simplifies to:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 4xz + y^2 + 2\sqrt{2}yz + 2z^2 \][/tex]

This step-by-step approach clarifies how the initial terms combine directly into the final simplified form.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.