Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's solve the equation [tex]\(\frac{x^2 - (x+1)(x+2)}{5x + 1} = 6\)[/tex] step by step.
Step 1: Simplify the numerator:
[tex]\[ x^2 - (x+1)(x+2) \][/tex]
Expand [tex]\((x+1)(x+2)\)[/tex]:
[tex]\[ (x+1)(x+2) = x^2 + 3x + 2 \][/tex]
So, we have:
[tex]\[ x^2 - (x^2 + 3x + 2) = x^2 - x^2 - 3x - 2 = -3x - 2 \][/tex]
Step 2: Substitute the simplified numerator back into the equation:
[tex]\[ \frac{-3x - 2}{5x + 1} = 6 \][/tex]
Step 3: Clear the fraction by multiplying both sides of the equation by [tex]\(5x + 1\)[/tex]:
[tex]\[ -3x - 2 = 6(5x + 1) \][/tex]
[tex]\[ -3x - 2 = 30x + 6 \][/tex]
Step 4: Move all terms involving [tex]\(x\)[/tex] to one side of the equation:
[tex]\[ -3x - 2 - 30x = 6 \][/tex]
[tex]\[ -3x - 30x - 2 = 6 \][/tex]
[tex]\[ -33x - 2 = 6 \][/tex]
Step 5: Isolate the term with [tex]\(x\)[/tex]:
[tex]\[ -33x - 2 + 2 = 6 + 2 \][/tex]
[tex]\[ -33x = 8 \][/tex]
Step 6: Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{8}{-33} \][/tex]
[tex]\[ x = -\frac{8}{33} \][/tex]
Thus, the solution to the equation [tex]\(\frac{x^2 - (x+1)(x+2)}{5x + 1} = 6\)[/tex] is:
[tex]\[ x = -\frac{8}{33} \][/tex]
Step 1: Simplify the numerator:
[tex]\[ x^2 - (x+1)(x+2) \][/tex]
Expand [tex]\((x+1)(x+2)\)[/tex]:
[tex]\[ (x+1)(x+2) = x^2 + 3x + 2 \][/tex]
So, we have:
[tex]\[ x^2 - (x^2 + 3x + 2) = x^2 - x^2 - 3x - 2 = -3x - 2 \][/tex]
Step 2: Substitute the simplified numerator back into the equation:
[tex]\[ \frac{-3x - 2}{5x + 1} = 6 \][/tex]
Step 3: Clear the fraction by multiplying both sides of the equation by [tex]\(5x + 1\)[/tex]:
[tex]\[ -3x - 2 = 6(5x + 1) \][/tex]
[tex]\[ -3x - 2 = 30x + 6 \][/tex]
Step 4: Move all terms involving [tex]\(x\)[/tex] to one side of the equation:
[tex]\[ -3x - 2 - 30x = 6 \][/tex]
[tex]\[ -3x - 30x - 2 = 6 \][/tex]
[tex]\[ -33x - 2 = 6 \][/tex]
Step 5: Isolate the term with [tex]\(x\)[/tex]:
[tex]\[ -33x - 2 + 2 = 6 + 2 \][/tex]
[tex]\[ -33x = 8 \][/tex]
Step 6: Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{8}{-33} \][/tex]
[tex]\[ x = -\frac{8}{33} \][/tex]
Thus, the solution to the equation [tex]\(\frac{x^2 - (x+1)(x+2)}{5x + 1} = 6\)[/tex] is:
[tex]\[ x = -\frac{8}{33} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.