At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the remainder of the polynomial division [tex]\(\frac{5x^3 + 7x + 5}{x + 2}\)[/tex], we need to perform polynomial long division. We will divide the polynomial [tex]\(5x^3 + 7x + 5\)[/tex] by the divisor [tex]\(x + 2\)[/tex].
1. Setup the Division:
We arrange the terms in descending order of power.
[tex]\[ \frac{5x^3 + 0x^2 + 7x + 5}{x + 2} \][/tex]
2. Divide the Leading Terms:
We begin by dividing the leading term of the numerator [tex]\(5x^3\)[/tex] by the leading term of the denominator [tex]\(x\)[/tex]:
[tex]\[ \frac{5x^3}{x} = 5x^2 \][/tex]
This is the first term of our quotient.
3. Multiply and Subtract:
Multiply [tex]\(5x^2\)[/tex] by [tex]\(x + 2\)[/tex]:
[tex]\[ 5x^2 \cdot (x + 2) = 5x^3 + 10x^2 \][/tex]
Subtract this result from the original polynomial:
[tex]\[ (5x^3 + 0x^2 + 7x + 5) - (5x^3 + 10x^2) = -10x^2 + 7x + 5 \][/tex]
4. Repeat the Process:
Next, divide the leading term of the new polynomial [tex]\(-10x^2\)[/tex] by the leading term of the denominator [tex]\(x\)[/tex]:
[tex]\[ \frac{-10x^2}{x} = -10x \][/tex]
This is the second term of our quotient.
Multiply [tex]\(-10x\)[/tex] by [tex]\(x + 2\)[/tex]:
[tex]\[ -10x \cdot (x + 2) = -10x^2 - 20x \][/tex]
Subtract this result from the new polynomial:
[tex]\[ (-10x^2 + 7x + 5) - (-10x^2 - 20x) = 27x + 5 \][/tex]
5. Repeat Again:
Now, divide the leading term of the new polynomial [tex]\(27x\)[/tex] by the leading term of the denominator [tex]\(x\)[/tex]:
[tex]\[ \frac{27x}{x} = 27 \][/tex]
This is the third term of our quotient.
Multiply [tex]\(27\)[/tex] by [tex]\(x + 2\)[/tex]:
[tex]\[ 27 \cdot (x + 2) = 27x + 54 \][/tex]
Subtract this result from the new polynomial:
[tex]\[ (27x + 5) - (27x + 54) = -49 \][/tex]
6. Final Quotient and Remainder:
The quotient of the division is [tex]\(5x^2 - 10x + 27\)[/tex] and the remainder is [tex]\(-49\)[/tex].
So the remainder when dividing [tex]\(5x^3 + 7x + 5\)[/tex] by [tex]\(x + 2\)[/tex] is [tex]\(\boxed{-49}\)[/tex].
1. Setup the Division:
We arrange the terms in descending order of power.
[tex]\[ \frac{5x^3 + 0x^2 + 7x + 5}{x + 2} \][/tex]
2. Divide the Leading Terms:
We begin by dividing the leading term of the numerator [tex]\(5x^3\)[/tex] by the leading term of the denominator [tex]\(x\)[/tex]:
[tex]\[ \frac{5x^3}{x} = 5x^2 \][/tex]
This is the first term of our quotient.
3. Multiply and Subtract:
Multiply [tex]\(5x^2\)[/tex] by [tex]\(x + 2\)[/tex]:
[tex]\[ 5x^2 \cdot (x + 2) = 5x^3 + 10x^2 \][/tex]
Subtract this result from the original polynomial:
[tex]\[ (5x^3 + 0x^2 + 7x + 5) - (5x^3 + 10x^2) = -10x^2 + 7x + 5 \][/tex]
4. Repeat the Process:
Next, divide the leading term of the new polynomial [tex]\(-10x^2\)[/tex] by the leading term of the denominator [tex]\(x\)[/tex]:
[tex]\[ \frac{-10x^2}{x} = -10x \][/tex]
This is the second term of our quotient.
Multiply [tex]\(-10x\)[/tex] by [tex]\(x + 2\)[/tex]:
[tex]\[ -10x \cdot (x + 2) = -10x^2 - 20x \][/tex]
Subtract this result from the new polynomial:
[tex]\[ (-10x^2 + 7x + 5) - (-10x^2 - 20x) = 27x + 5 \][/tex]
5. Repeat Again:
Now, divide the leading term of the new polynomial [tex]\(27x\)[/tex] by the leading term of the denominator [tex]\(x\)[/tex]:
[tex]\[ \frac{27x}{x} = 27 \][/tex]
This is the third term of our quotient.
Multiply [tex]\(27\)[/tex] by [tex]\(x + 2\)[/tex]:
[tex]\[ 27 \cdot (x + 2) = 27x + 54 \][/tex]
Subtract this result from the new polynomial:
[tex]\[ (27x + 5) - (27x + 54) = -49 \][/tex]
6. Final Quotient and Remainder:
The quotient of the division is [tex]\(5x^2 - 10x + 27\)[/tex] and the remainder is [tex]\(-49\)[/tex].
So the remainder when dividing [tex]\(5x^3 + 7x + 5\)[/tex] by [tex]\(x + 2\)[/tex] is [tex]\(\boxed{-49}\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.