Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the remainder of the polynomial division [tex]\(\frac{5x^3 + 7x + 5}{x + 2}\)[/tex], we need to perform polynomial long division. We will divide the polynomial [tex]\(5x^3 + 7x + 5\)[/tex] by the divisor [tex]\(x + 2\)[/tex].
1. Setup the Division:
We arrange the terms in descending order of power.
[tex]\[ \frac{5x^3 + 0x^2 + 7x + 5}{x + 2} \][/tex]
2. Divide the Leading Terms:
We begin by dividing the leading term of the numerator [tex]\(5x^3\)[/tex] by the leading term of the denominator [tex]\(x\)[/tex]:
[tex]\[ \frac{5x^3}{x} = 5x^2 \][/tex]
This is the first term of our quotient.
3. Multiply and Subtract:
Multiply [tex]\(5x^2\)[/tex] by [tex]\(x + 2\)[/tex]:
[tex]\[ 5x^2 \cdot (x + 2) = 5x^3 + 10x^2 \][/tex]
Subtract this result from the original polynomial:
[tex]\[ (5x^3 + 0x^2 + 7x + 5) - (5x^3 + 10x^2) = -10x^2 + 7x + 5 \][/tex]
4. Repeat the Process:
Next, divide the leading term of the new polynomial [tex]\(-10x^2\)[/tex] by the leading term of the denominator [tex]\(x\)[/tex]:
[tex]\[ \frac{-10x^2}{x} = -10x \][/tex]
This is the second term of our quotient.
Multiply [tex]\(-10x\)[/tex] by [tex]\(x + 2\)[/tex]:
[tex]\[ -10x \cdot (x + 2) = -10x^2 - 20x \][/tex]
Subtract this result from the new polynomial:
[tex]\[ (-10x^2 + 7x + 5) - (-10x^2 - 20x) = 27x + 5 \][/tex]
5. Repeat Again:
Now, divide the leading term of the new polynomial [tex]\(27x\)[/tex] by the leading term of the denominator [tex]\(x\)[/tex]:
[tex]\[ \frac{27x}{x} = 27 \][/tex]
This is the third term of our quotient.
Multiply [tex]\(27\)[/tex] by [tex]\(x + 2\)[/tex]:
[tex]\[ 27 \cdot (x + 2) = 27x + 54 \][/tex]
Subtract this result from the new polynomial:
[tex]\[ (27x + 5) - (27x + 54) = -49 \][/tex]
6. Final Quotient and Remainder:
The quotient of the division is [tex]\(5x^2 - 10x + 27\)[/tex] and the remainder is [tex]\(-49\)[/tex].
So the remainder when dividing [tex]\(5x^3 + 7x + 5\)[/tex] by [tex]\(x + 2\)[/tex] is [tex]\(\boxed{-49}\)[/tex].
1. Setup the Division:
We arrange the terms in descending order of power.
[tex]\[ \frac{5x^3 + 0x^2 + 7x + 5}{x + 2} \][/tex]
2. Divide the Leading Terms:
We begin by dividing the leading term of the numerator [tex]\(5x^3\)[/tex] by the leading term of the denominator [tex]\(x\)[/tex]:
[tex]\[ \frac{5x^3}{x} = 5x^2 \][/tex]
This is the first term of our quotient.
3. Multiply and Subtract:
Multiply [tex]\(5x^2\)[/tex] by [tex]\(x + 2\)[/tex]:
[tex]\[ 5x^2 \cdot (x + 2) = 5x^3 + 10x^2 \][/tex]
Subtract this result from the original polynomial:
[tex]\[ (5x^3 + 0x^2 + 7x + 5) - (5x^3 + 10x^2) = -10x^2 + 7x + 5 \][/tex]
4. Repeat the Process:
Next, divide the leading term of the new polynomial [tex]\(-10x^2\)[/tex] by the leading term of the denominator [tex]\(x\)[/tex]:
[tex]\[ \frac{-10x^2}{x} = -10x \][/tex]
This is the second term of our quotient.
Multiply [tex]\(-10x\)[/tex] by [tex]\(x + 2\)[/tex]:
[tex]\[ -10x \cdot (x + 2) = -10x^2 - 20x \][/tex]
Subtract this result from the new polynomial:
[tex]\[ (-10x^2 + 7x + 5) - (-10x^2 - 20x) = 27x + 5 \][/tex]
5. Repeat Again:
Now, divide the leading term of the new polynomial [tex]\(27x\)[/tex] by the leading term of the denominator [tex]\(x\)[/tex]:
[tex]\[ \frac{27x}{x} = 27 \][/tex]
This is the third term of our quotient.
Multiply [tex]\(27\)[/tex] by [tex]\(x + 2\)[/tex]:
[tex]\[ 27 \cdot (x + 2) = 27x + 54 \][/tex]
Subtract this result from the new polynomial:
[tex]\[ (27x + 5) - (27x + 54) = -49 \][/tex]
6. Final Quotient and Remainder:
The quotient of the division is [tex]\(5x^2 - 10x + 27\)[/tex] and the remainder is [tex]\(-49\)[/tex].
So the remainder when dividing [tex]\(5x^3 + 7x + 5\)[/tex] by [tex]\(x + 2\)[/tex] is [tex]\(\boxed{-49}\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.