At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Alright, let's solve this step-by-step:
We have the balanced chemical equation:
[tex]\[ 2 \, \text{C}_2\text{H}_2 (\text{g}) + 5 \, \text{O}_2 (\text{g}) \rightarrow 4 \, \text{CO}_2 (\text{g}) + 2 \, \text{H}_2\text{O} (\text{g}) \][/tex]
We need to determine how many liters of [tex]\(\text{C}_2\text{H}_2\)[/tex] are required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex].
From the balanced equation, we know the volume ratios are as follows:
[tex]\[ 2 \, \text{L} \, \text{C}_2\text{H}_2 \text{ produces } 4 \, \text{L} \, \text{CO}_2 \][/tex]
We can set up the ratio of [tex]\(\text{C}_2\text{H}_2\)[/tex] to [tex]\(\text{CO}_2\)[/tex] from the equation:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} \][/tex]
Let [tex]\( x \)[/tex] be the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] needed to produce 8 liters of [tex]\(\text{CO}_2\)[/tex]:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} = \frac{x \, \text{L} \, \text{C}_2\text{H}_2}{8 \, \text{L} \, \text{CO}_2} \][/tex]
To solve for [tex]\( x \)[/tex], we can cross-multiply:
[tex]\[ 2 \times 8 = 4 \times x \][/tex]
[tex]\[ 16 = 4x \][/tex]
Now, we divide both sides by 4 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{16}{4} \][/tex]
[tex]\[ x = 4 \][/tex]
Therefore, the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex] is [tex]\( 4 \)[/tex] liters.
We have the balanced chemical equation:
[tex]\[ 2 \, \text{C}_2\text{H}_2 (\text{g}) + 5 \, \text{O}_2 (\text{g}) \rightarrow 4 \, \text{CO}_2 (\text{g}) + 2 \, \text{H}_2\text{O} (\text{g}) \][/tex]
We need to determine how many liters of [tex]\(\text{C}_2\text{H}_2\)[/tex] are required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex].
From the balanced equation, we know the volume ratios are as follows:
[tex]\[ 2 \, \text{L} \, \text{C}_2\text{H}_2 \text{ produces } 4 \, \text{L} \, \text{CO}_2 \][/tex]
We can set up the ratio of [tex]\(\text{C}_2\text{H}_2\)[/tex] to [tex]\(\text{CO}_2\)[/tex] from the equation:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} \][/tex]
Let [tex]\( x \)[/tex] be the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] needed to produce 8 liters of [tex]\(\text{CO}_2\)[/tex]:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} = \frac{x \, \text{L} \, \text{C}_2\text{H}_2}{8 \, \text{L} \, \text{CO}_2} \][/tex]
To solve for [tex]\( x \)[/tex], we can cross-multiply:
[tex]\[ 2 \times 8 = 4 \times x \][/tex]
[tex]\[ 16 = 4x \][/tex]
Now, we divide both sides by 4 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{16}{4} \][/tex]
[tex]\[ x = 4 \][/tex]
Therefore, the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex] is [tex]\( 4 \)[/tex] liters.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.