Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Alright, let's solve this step-by-step:
We have the balanced chemical equation:
[tex]\[ 2 \, \text{C}_2\text{H}_2 (\text{g}) + 5 \, \text{O}_2 (\text{g}) \rightarrow 4 \, \text{CO}_2 (\text{g}) + 2 \, \text{H}_2\text{O} (\text{g}) \][/tex]
We need to determine how many liters of [tex]\(\text{C}_2\text{H}_2\)[/tex] are required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex].
From the balanced equation, we know the volume ratios are as follows:
[tex]\[ 2 \, \text{L} \, \text{C}_2\text{H}_2 \text{ produces } 4 \, \text{L} \, \text{CO}_2 \][/tex]
We can set up the ratio of [tex]\(\text{C}_2\text{H}_2\)[/tex] to [tex]\(\text{CO}_2\)[/tex] from the equation:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} \][/tex]
Let [tex]\( x \)[/tex] be the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] needed to produce 8 liters of [tex]\(\text{CO}_2\)[/tex]:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} = \frac{x \, \text{L} \, \text{C}_2\text{H}_2}{8 \, \text{L} \, \text{CO}_2} \][/tex]
To solve for [tex]\( x \)[/tex], we can cross-multiply:
[tex]\[ 2 \times 8 = 4 \times x \][/tex]
[tex]\[ 16 = 4x \][/tex]
Now, we divide both sides by 4 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{16}{4} \][/tex]
[tex]\[ x = 4 \][/tex]
Therefore, the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex] is [tex]\( 4 \)[/tex] liters.
We have the balanced chemical equation:
[tex]\[ 2 \, \text{C}_2\text{H}_2 (\text{g}) + 5 \, \text{O}_2 (\text{g}) \rightarrow 4 \, \text{CO}_2 (\text{g}) + 2 \, \text{H}_2\text{O} (\text{g}) \][/tex]
We need to determine how many liters of [tex]\(\text{C}_2\text{H}_2\)[/tex] are required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex].
From the balanced equation, we know the volume ratios are as follows:
[tex]\[ 2 \, \text{L} \, \text{C}_2\text{H}_2 \text{ produces } 4 \, \text{L} \, \text{CO}_2 \][/tex]
We can set up the ratio of [tex]\(\text{C}_2\text{H}_2\)[/tex] to [tex]\(\text{CO}_2\)[/tex] from the equation:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} \][/tex]
Let [tex]\( x \)[/tex] be the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] needed to produce 8 liters of [tex]\(\text{CO}_2\)[/tex]:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} = \frac{x \, \text{L} \, \text{C}_2\text{H}_2}{8 \, \text{L} \, \text{CO}_2} \][/tex]
To solve for [tex]\( x \)[/tex], we can cross-multiply:
[tex]\[ 2 \times 8 = 4 \times x \][/tex]
[tex]\[ 16 = 4x \][/tex]
Now, we divide both sides by 4 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{16}{4} \][/tex]
[tex]\[ x = 4 \][/tex]
Therefore, the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex] is [tex]\( 4 \)[/tex] liters.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.