Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve the problem step by step:
### Step 1: Calculate the differences between the points
Given the data points [tex]\((-6, -6)\)[/tex], [tex]\((-2, -4)\)[/tex], and [tex]\( (4, -1) \)[/tex]:
- Calculate the differences in [tex]\(x\)[/tex] and [tex]\(y\)[/tex] between the first and second points:
- [tex]\(\Delta x_1 = x_2 - x_1 = -2 - (-6) = 4\)[/tex]
- [tex]\(\Delta y_1 = y_2 - y_1 = -4 - (-6) = 2\)[/tex]
- Calculate the differences in [tex]\(x\)[/tex] and [tex]\(y\)[/tex] between the second and third points:
- [tex]\(\Delta x_2 = x_3 - x_2 = 4 - (-2) = 6\)[/tex]
- [tex]\(\Delta y_2 = y_3 - y_2 = -1 - (-4) = 3\)[/tex]
### Step 2: Calculate the slopes between the points
- Find the slope between the first and second points using the formula [tex]\( \text{slope} = \frac{\Delta y}{\Delta x} \)[/tex]:
- [tex]\( \text{slope}_1 = \frac{\Delta y_1}{\Delta x_1} = \frac{2}{4} = 0.5 \)[/tex]
- Find the slope between the second and third points using the same formula:
- [tex]\( \text{slope}_2 = \frac{\Delta y_2}{\Delta x_2} = \frac{3}{6} = 0.5 \)[/tex]
### Conclusion
The slopes between the given points are constant, and they both equal [tex]\(0.5\)[/tex].
Thus, the slope of the line passing through the given points [tex]\((-6, -6)\)[/tex], [tex]\((-2, -4)\)[/tex], and [tex]\( (4, -1)\)[/tex] is [tex]\(0.5\)[/tex]. This finding indicates that the points lie on a straight line with the slope of [tex]\(0.5\)[/tex].
### Step 1: Calculate the differences between the points
Given the data points [tex]\((-6, -6)\)[/tex], [tex]\((-2, -4)\)[/tex], and [tex]\( (4, -1) \)[/tex]:
- Calculate the differences in [tex]\(x\)[/tex] and [tex]\(y\)[/tex] between the first and second points:
- [tex]\(\Delta x_1 = x_2 - x_1 = -2 - (-6) = 4\)[/tex]
- [tex]\(\Delta y_1 = y_2 - y_1 = -4 - (-6) = 2\)[/tex]
- Calculate the differences in [tex]\(x\)[/tex] and [tex]\(y\)[/tex] between the second and third points:
- [tex]\(\Delta x_2 = x_3 - x_2 = 4 - (-2) = 6\)[/tex]
- [tex]\(\Delta y_2 = y_3 - y_2 = -1 - (-4) = 3\)[/tex]
### Step 2: Calculate the slopes between the points
- Find the slope between the first and second points using the formula [tex]\( \text{slope} = \frac{\Delta y}{\Delta x} \)[/tex]:
- [tex]\( \text{slope}_1 = \frac{\Delta y_1}{\Delta x_1} = \frac{2}{4} = 0.5 \)[/tex]
- Find the slope between the second and third points using the same formula:
- [tex]\( \text{slope}_2 = \frac{\Delta y_2}{\Delta x_2} = \frac{3}{6} = 0.5 \)[/tex]
### Conclusion
The slopes between the given points are constant, and they both equal [tex]\(0.5\)[/tex].
Thus, the slope of the line passing through the given points [tex]\((-6, -6)\)[/tex], [tex]\((-2, -4)\)[/tex], and [tex]\( (4, -1)\)[/tex] is [tex]\(0.5\)[/tex]. This finding indicates that the points lie on a straight line with the slope of [tex]\(0.5\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.