Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve the problem step by step:
### Step 1: Calculate the differences between the points
Given the data points [tex]\((-6, -6)\)[/tex], [tex]\((-2, -4)\)[/tex], and [tex]\( (4, -1) \)[/tex]:
- Calculate the differences in [tex]\(x\)[/tex] and [tex]\(y\)[/tex] between the first and second points:
- [tex]\(\Delta x_1 = x_2 - x_1 = -2 - (-6) = 4\)[/tex]
- [tex]\(\Delta y_1 = y_2 - y_1 = -4 - (-6) = 2\)[/tex]
- Calculate the differences in [tex]\(x\)[/tex] and [tex]\(y\)[/tex] between the second and third points:
- [tex]\(\Delta x_2 = x_3 - x_2 = 4 - (-2) = 6\)[/tex]
- [tex]\(\Delta y_2 = y_3 - y_2 = -1 - (-4) = 3\)[/tex]
### Step 2: Calculate the slopes between the points
- Find the slope between the first and second points using the formula [tex]\( \text{slope} = \frac{\Delta y}{\Delta x} \)[/tex]:
- [tex]\( \text{slope}_1 = \frac{\Delta y_1}{\Delta x_1} = \frac{2}{4} = 0.5 \)[/tex]
- Find the slope between the second and third points using the same formula:
- [tex]\( \text{slope}_2 = \frac{\Delta y_2}{\Delta x_2} = \frac{3}{6} = 0.5 \)[/tex]
### Conclusion
The slopes between the given points are constant, and they both equal [tex]\(0.5\)[/tex].
Thus, the slope of the line passing through the given points [tex]\((-6, -6)\)[/tex], [tex]\((-2, -4)\)[/tex], and [tex]\( (4, -1)\)[/tex] is [tex]\(0.5\)[/tex]. This finding indicates that the points lie on a straight line with the slope of [tex]\(0.5\)[/tex].
### Step 1: Calculate the differences between the points
Given the data points [tex]\((-6, -6)\)[/tex], [tex]\((-2, -4)\)[/tex], and [tex]\( (4, -1) \)[/tex]:
- Calculate the differences in [tex]\(x\)[/tex] and [tex]\(y\)[/tex] between the first and second points:
- [tex]\(\Delta x_1 = x_2 - x_1 = -2 - (-6) = 4\)[/tex]
- [tex]\(\Delta y_1 = y_2 - y_1 = -4 - (-6) = 2\)[/tex]
- Calculate the differences in [tex]\(x\)[/tex] and [tex]\(y\)[/tex] between the second and third points:
- [tex]\(\Delta x_2 = x_3 - x_2 = 4 - (-2) = 6\)[/tex]
- [tex]\(\Delta y_2 = y_3 - y_2 = -1 - (-4) = 3\)[/tex]
### Step 2: Calculate the slopes between the points
- Find the slope between the first and second points using the formula [tex]\( \text{slope} = \frac{\Delta y}{\Delta x} \)[/tex]:
- [tex]\( \text{slope}_1 = \frac{\Delta y_1}{\Delta x_1} = \frac{2}{4} = 0.5 \)[/tex]
- Find the slope between the second and third points using the same formula:
- [tex]\( \text{slope}_2 = \frac{\Delta y_2}{\Delta x_2} = \frac{3}{6} = 0.5 \)[/tex]
### Conclusion
The slopes between the given points are constant, and they both equal [tex]\(0.5\)[/tex].
Thus, the slope of the line passing through the given points [tex]\((-6, -6)\)[/tex], [tex]\((-2, -4)\)[/tex], and [tex]\( (4, -1)\)[/tex] is [tex]\(0.5\)[/tex]. This finding indicates that the points lie on a straight line with the slope of [tex]\(0.5\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.