Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

A geometric sequence begins with [tex]\(5, -15, 45, -135, 405, \ldots\)[/tex].

Which option below represents the formula for the sequence?

A. [tex]\(f(n) = 3(5)^n\)[/tex]
B. [tex]\(f(n) = -3(5)^n\)[/tex]
C. [tex]\(f(n) = 5(3)^{n-1}\)[/tex]
D. [tex]\(f(n) = 5(-3)^{n-1}\)[/tex]

Sagot :

To determine the formula for the given geometric sequence [tex]\(5, -15, 45, -135, \ldots\)[/tex], let's analyze the sequence step-by-step:

1. Identify the first term and common ratio:
- The first term of the sequence ([tex]\(a_1\)[/tex]) is 5.
- To find the common ratio ([tex]\(r\)[/tex]), we can divide the second term by the first term: [tex]\(-15 / 5 = -3\)[/tex].

2. Verify the common ratio:
- The first term is [tex]\(5\)[/tex].
- The second term ([tex]\(a_2\)[/tex]) is [tex]\(5 \times (-3) = -15\)[/tex].
- The third term ([tex]\(a_3\)[/tex]) is [tex]\(-15 \times (-3) = 45\)[/tex].
- The fourth term ([tex]\(a_4\)[/tex]) is [tex]\(45 \times (-3) = -135\)[/tex].

3. Formulate the general term of the sequence:
- A geometric sequence is generally represented as [tex]\(a_n = a_1 \times r^{n-1}\)[/tex].
- Substituting the first term ([tex]\(a_1 = 5\)[/tex]) and the common ratio ([tex]\(r = -3\)[/tex]), we get:
[tex]\[ a_n = 5 \times (-3)^{n-1} \][/tex]

4. Verify the formula with specific terms:
- For [tex]\(n = 1\)[/tex]:
[tex]\[ a_1 = 5 \times (-3)^{1-1} = 5 \times 1 = 5 \][/tex]
- For [tex]\(n = 2\)[/tex]:
[tex]\[ a_2 = 5 \times (-3)^{2-1} = 5 \times (-3) = -15 \][/tex]
- For [tex]\(n = 3\)[/tex]:
[tex]\[ a_3 = 5 \times (-3)^{3-1} = 5 \times 9 = 45 \][/tex]
- For [tex]\(n = 4\)[/tex]:
[tex]\[ a_4 = 5 \times (-3)^{4-1} = 5 \times (-27) = -135 \][/tex]

Given the calculations, the correct formula for the sequence is:
[tex]\[ f(n) = 5(-3)^{n-1} \][/tex]

Among the options provided, this corresponds to the last option:

[tex]\[ f(n) = 5(-3)^{n-1} \][/tex]