Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the principal investment [tex]\( P \)[/tex] from the given information, we need to rearrange the compound interest formula and solve for [tex]\( P \)[/tex]. The given formula is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
where:
- [tex]\( A \)[/tex] is the final amount, which is $14,326.68.
- [tex]\( r \)[/tex] is the annual interest rate, which is 0.039 (3.9%).
- [tex]\( n \)[/tex] is the number of compounding periods per year, which is 12.
- [tex]\( t \)[/tex] is the number of years, which is 20.
First, let's determine the interest rate per compounding period and the number of compounding periods over the entire timeframe:
1. The interest rate per period:
[tex]\[ \frac{r}{n} = \frac{0.039}{12} \][/tex]
2. The number of compounding periods:
[tex]\[ nt = 12 \times 20 = 240 \][/tex]
We can now replace these values in the formula to isolate [tex]\( P \)[/tex]:
[tex]\[ P = \frac{A}{\left(1 + \frac{0.039}{12}\right)^{240}} \][/tex]
Next, we calculate the expression in the denominator:
1. Calculate [tex]\( \frac{0.039}{12} \)[/tex]:
[tex]\[ \frac{0.039}{12} = 0.00325 \][/tex]
2. Add 1 to the result:
[tex]\[ 1 + 0.00325 = 1.00325 \][/tex]
3. Raise the sum to the power of 240:
[tex]\[ 1.00325^{240} \][/tex]
Finally, divide [tex]\( A \)[/tex] by this result to find the principal [tex]\( P \)[/tex]:
[tex]\[ P = \frac{14,326.68}{1.00325^{240}} \][/tex]
When you perform the above calculation, you find that:
[tex]\[ P \approx 6,575.75 \][/tex]
Therefore, the value of the principal investment, rounded to the nearest hundredths place, is [tex]\( \boxed{6,575.75} \)[/tex]. This matches the first answer option given.
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
where:
- [tex]\( A \)[/tex] is the final amount, which is $14,326.68.
- [tex]\( r \)[/tex] is the annual interest rate, which is 0.039 (3.9%).
- [tex]\( n \)[/tex] is the number of compounding periods per year, which is 12.
- [tex]\( t \)[/tex] is the number of years, which is 20.
First, let's determine the interest rate per compounding period and the number of compounding periods over the entire timeframe:
1. The interest rate per period:
[tex]\[ \frac{r}{n} = \frac{0.039}{12} \][/tex]
2. The number of compounding periods:
[tex]\[ nt = 12 \times 20 = 240 \][/tex]
We can now replace these values in the formula to isolate [tex]\( P \)[/tex]:
[tex]\[ P = \frac{A}{\left(1 + \frac{0.039}{12}\right)^{240}} \][/tex]
Next, we calculate the expression in the denominator:
1. Calculate [tex]\( \frac{0.039}{12} \)[/tex]:
[tex]\[ \frac{0.039}{12} = 0.00325 \][/tex]
2. Add 1 to the result:
[tex]\[ 1 + 0.00325 = 1.00325 \][/tex]
3. Raise the sum to the power of 240:
[tex]\[ 1.00325^{240} \][/tex]
Finally, divide [tex]\( A \)[/tex] by this result to find the principal [tex]\( P \)[/tex]:
[tex]\[ P = \frac{14,326.68}{1.00325^{240}} \][/tex]
When you perform the above calculation, you find that:
[tex]\[ P \approx 6,575.75 \][/tex]
Therefore, the value of the principal investment, rounded to the nearest hundredths place, is [tex]\( \boxed{6,575.75} \)[/tex]. This matches the first answer option given.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.