Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

If [tex]$x+\frac{1}{x}=9$[/tex], find the value of [tex]$x^4+\frac{1}{x^4}$[/tex].

Sagot :

To find the value of [tex]\( x^4 + \frac{1}{x^4} \)[/tex] given that [tex]\( x + \frac{1}{x} = 9 \)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ x + \frac{1}{x} = 9 \][/tex]

2. Square both sides of the equation to eliminate the fraction:
[tex]\[ \left( x + \frac{1}{x} \right)^2 = 9^2 \][/tex]

3. Simplify the left-hand side:
[tex]\[ x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 81 \][/tex]
Since [tex]\( x \cdot \frac{1}{x} = 1 \)[/tex], we have:
[tex]\[ x^2 + 2 + \frac{1}{x^2} = 81 \][/tex]

4. Subtract 2 from both sides to isolate [tex]\( x^2 + \frac{1}{x^2} \)[/tex]:
[tex]\[ x^2 + \frac{1}{x^2} = 79 \][/tex]

5. Square the new equation to find [tex]\( x^4 + \frac{1}{x^4} \)[/tex]:
[tex]\[ \left( x^2 + \frac{1}{x^2} \right)^2 = 79^2 \][/tex]

6. Simplify the left-hand side:
[tex]\[ x^4 + 2 \cdot x^2 \cdot \frac{1}{x^2} + \frac{1}{x^4} = 6241 \][/tex]
Again, [tex]\( x^2 \cdot \frac{1}{x^2} = 1 \)[/tex], so we have:
[tex]\[ x^4 + 2 + \frac{1}{x^4} = 6241 \][/tex]

7. Subtract 2 from both sides to isolate [tex]\( x^4 + \frac{1}{x^4} \)[/tex]:
[tex]\[ x^4 + \frac{1}{x^4} = 6239 \][/tex]

Hence, the value of [tex]\( x^4 + \frac{1}{x^4} \)[/tex] is [tex]\( 6239 \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.