Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the problem step-by-step, let's first understand the function [tex]\( f(x) \)[/tex] and graph it.
The function is given as follows:
[tex]\[ f(x) = \begin{cases} 1 - x^2 & \text{if } x < 1 \\ -2x - 3 & \text{if } x \geq 1 \end{cases} \][/tex]
### Step 1: Graph the function
To graph the function, we need to do the following:
1. Graph the piece [tex]\( 1 - x^2 \)[/tex] for [tex]\( x < 1 \)[/tex]:
This is a downward-opening parabola. When [tex]\( x = 0 \)[/tex], [tex]\( y = 1 \)[/tex], and it opens downward with its vertex at [tex]\( (0,1) \)[/tex].
2. Graph the piece [tex]\( -2x - 3 \)[/tex] for [tex]\( x \geq 1 \)[/tex]:
This is a linear function with a slope of -2 and a y-intercept of -3. For [tex]\( x = 1 \)[/tex], [tex]\( y = -2(1) - 3 = -5 \)[/tex].
### Step 2: Determine boundaries and transitions
To better visualize the function's continuity at [tex]\( x = 1 \)[/tex], let's calculate a few critical points:
For [tex]\( x < 1 \)[/tex]:
[tex]\[ \begin{aligned} f(0) &= 1 - 0^2 = 1 \\ f(0.5) &= 1 - (0.5)^2 = 1 - 0.25 = 0.75 \\ f(0.9) &= 1 - (0.9)^2 = 1 - 0.81 = 0.19 \end{aligned} \][/tex]
For continuity at [tex]\( x = 1 \)[/tex]:
[tex]\[ \begin{aligned} \lim_{x \to 1^-} f(x) &= f(1^-)= 1 - 1^2 = 0 \\ f(1) &= -2(1) - 3 = -5 \\ \lim_{x \to 1^+} f(x) = f(1^+) &= -2(1 + \epsilon) - 3= -2 - 3 = -5, \end{aligned} \][/tex]
where+ [tex]\(\epsilon\)[/tex] is a small number approaching 0.
### Step 3: Summary and Conclusion
So, let's evaluate:
- From the left-hand side as [tex]\( x \)[/tex] approaches 1 ([tex]\( x<1 \)[/tex]), the limit is:
[tex]\[ \lim_{x \to 1^-} (1 - x^2) = 0. \][/tex]
- From the right-hand side ([tex]\( x \ge 1 \)[/tex]), the limit is:
[tex]\[ \lim_{x \to 1^+} (-2x - 3) = -5. \][/tex]
Since [tex]\( \lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x) \)[/tex], the limits from both sides do not equal [tex]\( f(1) \)[/tex]. Therefore, the function is not continuous at [tex]\( x = 1\)[/tex].
### Graph of f(x)
To complete the graphical inspection:
- Plot [tex]\( 1 - x^2 \)[/tex] for [tex]\( x < 1 \)[/tex].
- Plot [tex]\( -2x - 3 \)[/tex] for [tex]\( x \geq 1 \)[/tex].
You will notice a discontinuity at [tex]\( x = 1 \)[/tex]. This is evident since there is a jump from [tex]\( 0 \)[/tex] (approaching from the left) to [tex]\( -5 \)[/tex] (evaluating at [tex]\( x = 1) \)[/tex].
In conclusion, the function [tex]\( f(x) \)[/tex] defined as:
[tex]\[ f(x) = \begin{cases} 1 - x^2 & \text{if } x < 1 \\ -2x - 3 & \text{if } x \geq 1 \end{cases} \][/tex]
is not continuous at [tex]\( x = 1 \)[/tex] because the left-hand limit and the right-hand limit at [tex]\( x = 1 \)[/tex] are not equal.
The function is given as follows:
[tex]\[ f(x) = \begin{cases} 1 - x^2 & \text{if } x < 1 \\ -2x - 3 & \text{if } x \geq 1 \end{cases} \][/tex]
### Step 1: Graph the function
To graph the function, we need to do the following:
1. Graph the piece [tex]\( 1 - x^2 \)[/tex] for [tex]\( x < 1 \)[/tex]:
This is a downward-opening parabola. When [tex]\( x = 0 \)[/tex], [tex]\( y = 1 \)[/tex], and it opens downward with its vertex at [tex]\( (0,1) \)[/tex].
2. Graph the piece [tex]\( -2x - 3 \)[/tex] for [tex]\( x \geq 1 \)[/tex]:
This is a linear function with a slope of -2 and a y-intercept of -3. For [tex]\( x = 1 \)[/tex], [tex]\( y = -2(1) - 3 = -5 \)[/tex].
### Step 2: Determine boundaries and transitions
To better visualize the function's continuity at [tex]\( x = 1 \)[/tex], let's calculate a few critical points:
For [tex]\( x < 1 \)[/tex]:
[tex]\[ \begin{aligned} f(0) &= 1 - 0^2 = 1 \\ f(0.5) &= 1 - (0.5)^2 = 1 - 0.25 = 0.75 \\ f(0.9) &= 1 - (0.9)^2 = 1 - 0.81 = 0.19 \end{aligned} \][/tex]
For continuity at [tex]\( x = 1 \)[/tex]:
[tex]\[ \begin{aligned} \lim_{x \to 1^-} f(x) &= f(1^-)= 1 - 1^2 = 0 \\ f(1) &= -2(1) - 3 = -5 \\ \lim_{x \to 1^+} f(x) = f(1^+) &= -2(1 + \epsilon) - 3= -2 - 3 = -5, \end{aligned} \][/tex]
where+ [tex]\(\epsilon\)[/tex] is a small number approaching 0.
### Step 3: Summary and Conclusion
So, let's evaluate:
- From the left-hand side as [tex]\( x \)[/tex] approaches 1 ([tex]\( x<1 \)[/tex]), the limit is:
[tex]\[ \lim_{x \to 1^-} (1 - x^2) = 0. \][/tex]
- From the right-hand side ([tex]\( x \ge 1 \)[/tex]), the limit is:
[tex]\[ \lim_{x \to 1^+} (-2x - 3) = -5. \][/tex]
Since [tex]\( \lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x) \)[/tex], the limits from both sides do not equal [tex]\( f(1) \)[/tex]. Therefore, the function is not continuous at [tex]\( x = 1\)[/tex].
### Graph of f(x)
To complete the graphical inspection:
- Plot [tex]\( 1 - x^2 \)[/tex] for [tex]\( x < 1 \)[/tex].
- Plot [tex]\( -2x - 3 \)[/tex] for [tex]\( x \geq 1 \)[/tex].
You will notice a discontinuity at [tex]\( x = 1 \)[/tex]. This is evident since there is a jump from [tex]\( 0 \)[/tex] (approaching from the left) to [tex]\( -5 \)[/tex] (evaluating at [tex]\( x = 1) \)[/tex].
In conclusion, the function [tex]\( f(x) \)[/tex] defined as:
[tex]\[ f(x) = \begin{cases} 1 - x^2 & \text{if } x < 1 \\ -2x - 3 & \text{if } x \geq 1 \end{cases} \][/tex]
is not continuous at [tex]\( x = 1 \)[/tex] because the left-hand limit and the right-hand limit at [tex]\( x = 1 \)[/tex] are not equal.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.