Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the equation [tex]\(\tan(x) - \cos^2(x) = \sin^2(x)\)[/tex], let's perform a step-by-step detailed analysis.
First, recall some basic trigonometric identities:
1. [tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex]
2. [tex]\(\sin^2(x) + \cos^2(x) = 1\)[/tex]
Given:
[tex]\[ \tan(x) - \cos^2(x) = \sin^2(x) \][/tex]
Step 1: Rewrite [tex]\(\tan(x)\)[/tex] using the quotient identity:
[tex]\[ \frac{\sin(x)}{\cos(x)} - \cos^2(x) = \sin^2(x) \][/tex]
Step 2: Multiply every term by [tex]\(\cos(x)\)[/tex] to clear the fraction (assuming [tex]\(\cos(x) \neq 0\)[/tex]):
[tex]\[ \sin(x) - \cos^3(x) = \sin^2(x) \cos(x) \][/tex]
Step 3: Reorganize the terms to isolate [tex]\(\sin(x)\)[/tex]:
[tex]\[ \sin(x) = \sin^2(x) \cos(x) + \cos(x)^3 \][/tex]
Step 4: Factor out common terms (if possible). Consider the Pythagorean identity for simplification:
[tex]\[ \sin(x) = \cos(x)(\cos(x)^2 + \sin(x)\cos(x) - 1) \][/tex]
Since this doesn't immediately reveal a simple solution, we can look at the given solutions [tex]\(\frac{\pi}{4} + k\pi\)[/tex], [tex]\(\frac{\pi}{2} + k\pi\)[/tex], and [tex]\(\frac{\pi}{6} + k\pi\)[/tex], and verify if they satisfy the equation.
Step 5: Verify [tex]\(\frac{\pi}{4} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{4} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{4}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{4}\right) = 1, \quad \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
[tex]\[ \cos^2\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}, \quad \sin^2\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2} \][/tex]
Substitute these into the equation:
[tex]\[ 1 - \frac{1}{2} = \frac{1}{2} \][/tex]
which is:
[tex]\[ \frac{1}{2} = \frac{1}{2} \][/tex]
Clearly, [tex]\(\frac{\pi}{4} + k\pi\)[/tex] is a solution.
Step 6: Verify [tex]\(\frac{\pi}{2} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{2} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{2}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{2}\right) \quad (\text{undefined, meaning vertical asymptote}), \quad \cos\left(\frac{\pi}{2}\right) = 0, \quad \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
Thus, [tex]\(\tan(x)\)[/tex] is undefined here, except for values of [tex]\(k\)[/tex] where [tex]\(x\)[/tex] aligns with [tex]\(\tan(x)\)[/tex] definition. Hence, we can reject this as it doesn't yield defined values reliably.
Step 7: Verify [tex]\(\frac{\pi}{6} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{6} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{6}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \quad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \][/tex]
[tex]\[ \cos^2\left(\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}, \quad \sin^2\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \][/tex]
Substitute these into the equation:
[tex]\[ \frac{1}{\sqrt{3}} - \frac{3}{4} = \frac{1}{4} \][/tex]
\]
Converting to common denominator:
[tex]\[ \frac{4}{4\sqrt{3}} - \frac{3}{4} = \frac{1}{4} \][/tex]
Clearly, [tex]\(\frac{\pi}{6} + k\pi\)[/tex] doesn't hold as a solution for [tex]\(\tan(x)\)[/tex].
Thus, the valid solutions are:
[tex]\[ x = \frac{\pi}{4} + k\pi \quad \text{for integer } k \][/tex]
First, recall some basic trigonometric identities:
1. [tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex]
2. [tex]\(\sin^2(x) + \cos^2(x) = 1\)[/tex]
Given:
[tex]\[ \tan(x) - \cos^2(x) = \sin^2(x) \][/tex]
Step 1: Rewrite [tex]\(\tan(x)\)[/tex] using the quotient identity:
[tex]\[ \frac{\sin(x)}{\cos(x)} - \cos^2(x) = \sin^2(x) \][/tex]
Step 2: Multiply every term by [tex]\(\cos(x)\)[/tex] to clear the fraction (assuming [tex]\(\cos(x) \neq 0\)[/tex]):
[tex]\[ \sin(x) - \cos^3(x) = \sin^2(x) \cos(x) \][/tex]
Step 3: Reorganize the terms to isolate [tex]\(\sin(x)\)[/tex]:
[tex]\[ \sin(x) = \sin^2(x) \cos(x) + \cos(x)^3 \][/tex]
Step 4: Factor out common terms (if possible). Consider the Pythagorean identity for simplification:
[tex]\[ \sin(x) = \cos(x)(\cos(x)^2 + \sin(x)\cos(x) - 1) \][/tex]
Since this doesn't immediately reveal a simple solution, we can look at the given solutions [tex]\(\frac{\pi}{4} + k\pi\)[/tex], [tex]\(\frac{\pi}{2} + k\pi\)[/tex], and [tex]\(\frac{\pi}{6} + k\pi\)[/tex], and verify if they satisfy the equation.
Step 5: Verify [tex]\(\frac{\pi}{4} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{4} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{4}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{4}\right) = 1, \quad \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
[tex]\[ \cos^2\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}, \quad \sin^2\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2} \][/tex]
Substitute these into the equation:
[tex]\[ 1 - \frac{1}{2} = \frac{1}{2} \][/tex]
which is:
[tex]\[ \frac{1}{2} = \frac{1}{2} \][/tex]
Clearly, [tex]\(\frac{\pi}{4} + k\pi\)[/tex] is a solution.
Step 6: Verify [tex]\(\frac{\pi}{2} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{2} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{2}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{2}\right) \quad (\text{undefined, meaning vertical asymptote}), \quad \cos\left(\frac{\pi}{2}\right) = 0, \quad \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
Thus, [tex]\(\tan(x)\)[/tex] is undefined here, except for values of [tex]\(k\)[/tex] where [tex]\(x\)[/tex] aligns with [tex]\(\tan(x)\)[/tex] definition. Hence, we can reject this as it doesn't yield defined values reliably.
Step 7: Verify [tex]\(\frac{\pi}{6} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{6} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{6}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \quad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \][/tex]
[tex]\[ \cos^2\left(\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}, \quad \sin^2\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \][/tex]
Substitute these into the equation:
[tex]\[ \frac{1}{\sqrt{3}} - \frac{3}{4} = \frac{1}{4} \][/tex]
\]
Converting to common denominator:
[tex]\[ \frac{4}{4\sqrt{3}} - \frac{3}{4} = \frac{1}{4} \][/tex]
Clearly, [tex]\(\frac{\pi}{6} + k\pi\)[/tex] doesn't hold as a solution for [tex]\(\tan(x)\)[/tex].
Thus, the valid solutions are:
[tex]\[ x = \frac{\pi}{4} + k\pi \quad \text{for integer } k \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.