Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the equation [tex]\(\tan(x) - \cos^2(x) = \sin^2(x)\)[/tex], let's perform a step-by-step detailed analysis.
First, recall some basic trigonometric identities:
1. [tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex]
2. [tex]\(\sin^2(x) + \cos^2(x) = 1\)[/tex]
Given:
[tex]\[ \tan(x) - \cos^2(x) = \sin^2(x) \][/tex]
Step 1: Rewrite [tex]\(\tan(x)\)[/tex] using the quotient identity:
[tex]\[ \frac{\sin(x)}{\cos(x)} - \cos^2(x) = \sin^2(x) \][/tex]
Step 2: Multiply every term by [tex]\(\cos(x)\)[/tex] to clear the fraction (assuming [tex]\(\cos(x) \neq 0\)[/tex]):
[tex]\[ \sin(x) - \cos^3(x) = \sin^2(x) \cos(x) \][/tex]
Step 3: Reorganize the terms to isolate [tex]\(\sin(x)\)[/tex]:
[tex]\[ \sin(x) = \sin^2(x) \cos(x) + \cos(x)^3 \][/tex]
Step 4: Factor out common terms (if possible). Consider the Pythagorean identity for simplification:
[tex]\[ \sin(x) = \cos(x)(\cos(x)^2 + \sin(x)\cos(x) - 1) \][/tex]
Since this doesn't immediately reveal a simple solution, we can look at the given solutions [tex]\(\frac{\pi}{4} + k\pi\)[/tex], [tex]\(\frac{\pi}{2} + k\pi\)[/tex], and [tex]\(\frac{\pi}{6} + k\pi\)[/tex], and verify if they satisfy the equation.
Step 5: Verify [tex]\(\frac{\pi}{4} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{4} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{4}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{4}\right) = 1, \quad \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
[tex]\[ \cos^2\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}, \quad \sin^2\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2} \][/tex]
Substitute these into the equation:
[tex]\[ 1 - \frac{1}{2} = \frac{1}{2} \][/tex]
which is:
[tex]\[ \frac{1}{2} = \frac{1}{2} \][/tex]
Clearly, [tex]\(\frac{\pi}{4} + k\pi\)[/tex] is a solution.
Step 6: Verify [tex]\(\frac{\pi}{2} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{2} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{2}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{2}\right) \quad (\text{undefined, meaning vertical asymptote}), \quad \cos\left(\frac{\pi}{2}\right) = 0, \quad \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
Thus, [tex]\(\tan(x)\)[/tex] is undefined here, except for values of [tex]\(k\)[/tex] where [tex]\(x\)[/tex] aligns with [tex]\(\tan(x)\)[/tex] definition. Hence, we can reject this as it doesn't yield defined values reliably.
Step 7: Verify [tex]\(\frac{\pi}{6} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{6} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{6}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \quad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \][/tex]
[tex]\[ \cos^2\left(\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}, \quad \sin^2\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \][/tex]
Substitute these into the equation:
[tex]\[ \frac{1}{\sqrt{3}} - \frac{3}{4} = \frac{1}{4} \][/tex]
\]
Converting to common denominator:
[tex]\[ \frac{4}{4\sqrt{3}} - \frac{3}{4} = \frac{1}{4} \][/tex]
Clearly, [tex]\(\frac{\pi}{6} + k\pi\)[/tex] doesn't hold as a solution for [tex]\(\tan(x)\)[/tex].
Thus, the valid solutions are:
[tex]\[ x = \frac{\pi}{4} + k\pi \quad \text{for integer } k \][/tex]
First, recall some basic trigonometric identities:
1. [tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex]
2. [tex]\(\sin^2(x) + \cos^2(x) = 1\)[/tex]
Given:
[tex]\[ \tan(x) - \cos^2(x) = \sin^2(x) \][/tex]
Step 1: Rewrite [tex]\(\tan(x)\)[/tex] using the quotient identity:
[tex]\[ \frac{\sin(x)}{\cos(x)} - \cos^2(x) = \sin^2(x) \][/tex]
Step 2: Multiply every term by [tex]\(\cos(x)\)[/tex] to clear the fraction (assuming [tex]\(\cos(x) \neq 0\)[/tex]):
[tex]\[ \sin(x) - \cos^3(x) = \sin^2(x) \cos(x) \][/tex]
Step 3: Reorganize the terms to isolate [tex]\(\sin(x)\)[/tex]:
[tex]\[ \sin(x) = \sin^2(x) \cos(x) + \cos(x)^3 \][/tex]
Step 4: Factor out common terms (if possible). Consider the Pythagorean identity for simplification:
[tex]\[ \sin(x) = \cos(x)(\cos(x)^2 + \sin(x)\cos(x) - 1) \][/tex]
Since this doesn't immediately reveal a simple solution, we can look at the given solutions [tex]\(\frac{\pi}{4} + k\pi\)[/tex], [tex]\(\frac{\pi}{2} + k\pi\)[/tex], and [tex]\(\frac{\pi}{6} + k\pi\)[/tex], and verify if they satisfy the equation.
Step 5: Verify [tex]\(\frac{\pi}{4} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{4} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{4}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{4}\right) = 1, \quad \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
[tex]\[ \cos^2\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}, \quad \sin^2\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2} \][/tex]
Substitute these into the equation:
[tex]\[ 1 - \frac{1}{2} = \frac{1}{2} \][/tex]
which is:
[tex]\[ \frac{1}{2} = \frac{1}{2} \][/tex]
Clearly, [tex]\(\frac{\pi}{4} + k\pi\)[/tex] is a solution.
Step 6: Verify [tex]\(\frac{\pi}{2} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{2} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{2}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{2}\right) \quad (\text{undefined, meaning vertical asymptote}), \quad \cos\left(\frac{\pi}{2}\right) = 0, \quad \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
Thus, [tex]\(\tan(x)\)[/tex] is undefined here, except for values of [tex]\(k\)[/tex] where [tex]\(x\)[/tex] aligns with [tex]\(\tan(x)\)[/tex] definition. Hence, we can reject this as it doesn't yield defined values reliably.
Step 7: Verify [tex]\(\frac{\pi}{6} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{6} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{6}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \quad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \][/tex]
[tex]\[ \cos^2\left(\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}, \quad \sin^2\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \][/tex]
Substitute these into the equation:
[tex]\[ \frac{1}{\sqrt{3}} - \frac{3}{4} = \frac{1}{4} \][/tex]
\]
Converting to common denominator:
[tex]\[ \frac{4}{4\sqrt{3}} - \frac{3}{4} = \frac{1}{4} \][/tex]
Clearly, [tex]\(\frac{\pi}{6} + k\pi\)[/tex] doesn't hold as a solution for [tex]\(\tan(x)\)[/tex].
Thus, the valid solutions are:
[tex]\[ x = \frac{\pi}{4} + k\pi \quad \text{for integer } k \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.