At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the equation [tex]\(\tan(x) - \cos^2(x) = \sin^2(x)\)[/tex], let's perform a step-by-step detailed analysis.
First, recall some basic trigonometric identities:
1. [tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex]
2. [tex]\(\sin^2(x) + \cos^2(x) = 1\)[/tex]
Given:
[tex]\[ \tan(x) - \cos^2(x) = \sin^2(x) \][/tex]
Step 1: Rewrite [tex]\(\tan(x)\)[/tex] using the quotient identity:
[tex]\[ \frac{\sin(x)}{\cos(x)} - \cos^2(x) = \sin^2(x) \][/tex]
Step 2: Multiply every term by [tex]\(\cos(x)\)[/tex] to clear the fraction (assuming [tex]\(\cos(x) \neq 0\)[/tex]):
[tex]\[ \sin(x) - \cos^3(x) = \sin^2(x) \cos(x) \][/tex]
Step 3: Reorganize the terms to isolate [tex]\(\sin(x)\)[/tex]:
[tex]\[ \sin(x) = \sin^2(x) \cos(x) + \cos(x)^3 \][/tex]
Step 4: Factor out common terms (if possible). Consider the Pythagorean identity for simplification:
[tex]\[ \sin(x) = \cos(x)(\cos(x)^2 + \sin(x)\cos(x) - 1) \][/tex]
Since this doesn't immediately reveal a simple solution, we can look at the given solutions [tex]\(\frac{\pi}{4} + k\pi\)[/tex], [tex]\(\frac{\pi}{2} + k\pi\)[/tex], and [tex]\(\frac{\pi}{6} + k\pi\)[/tex], and verify if they satisfy the equation.
Step 5: Verify [tex]\(\frac{\pi}{4} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{4} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{4}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{4}\right) = 1, \quad \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
[tex]\[ \cos^2\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}, \quad \sin^2\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2} \][/tex]
Substitute these into the equation:
[tex]\[ 1 - \frac{1}{2} = \frac{1}{2} \][/tex]
which is:
[tex]\[ \frac{1}{2} = \frac{1}{2} \][/tex]
Clearly, [tex]\(\frac{\pi}{4} + k\pi\)[/tex] is a solution.
Step 6: Verify [tex]\(\frac{\pi}{2} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{2} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{2}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{2}\right) \quad (\text{undefined, meaning vertical asymptote}), \quad \cos\left(\frac{\pi}{2}\right) = 0, \quad \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
Thus, [tex]\(\tan(x)\)[/tex] is undefined here, except for values of [tex]\(k\)[/tex] where [tex]\(x\)[/tex] aligns with [tex]\(\tan(x)\)[/tex] definition. Hence, we can reject this as it doesn't yield defined values reliably.
Step 7: Verify [tex]\(\frac{\pi}{6} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{6} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{6}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \quad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \][/tex]
[tex]\[ \cos^2\left(\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}, \quad \sin^2\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \][/tex]
Substitute these into the equation:
[tex]\[ \frac{1}{\sqrt{3}} - \frac{3}{4} = \frac{1}{4} \][/tex]
\]
Converting to common denominator:
[tex]\[ \frac{4}{4\sqrt{3}} - \frac{3}{4} = \frac{1}{4} \][/tex]
Clearly, [tex]\(\frac{\pi}{6} + k\pi\)[/tex] doesn't hold as a solution for [tex]\(\tan(x)\)[/tex].
Thus, the valid solutions are:
[tex]\[ x = \frac{\pi}{4} + k\pi \quad \text{for integer } k \][/tex]
First, recall some basic trigonometric identities:
1. [tex]\(\tan(x) = \frac{\sin(x)}{\cos(x)}\)[/tex]
2. [tex]\(\sin^2(x) + \cos^2(x) = 1\)[/tex]
Given:
[tex]\[ \tan(x) - \cos^2(x) = \sin^2(x) \][/tex]
Step 1: Rewrite [tex]\(\tan(x)\)[/tex] using the quotient identity:
[tex]\[ \frac{\sin(x)}{\cos(x)} - \cos^2(x) = \sin^2(x) \][/tex]
Step 2: Multiply every term by [tex]\(\cos(x)\)[/tex] to clear the fraction (assuming [tex]\(\cos(x) \neq 0\)[/tex]):
[tex]\[ \sin(x) - \cos^3(x) = \sin^2(x) \cos(x) \][/tex]
Step 3: Reorganize the terms to isolate [tex]\(\sin(x)\)[/tex]:
[tex]\[ \sin(x) = \sin^2(x) \cos(x) + \cos(x)^3 \][/tex]
Step 4: Factor out common terms (if possible). Consider the Pythagorean identity for simplification:
[tex]\[ \sin(x) = \cos(x)(\cos(x)^2 + \sin(x)\cos(x) - 1) \][/tex]
Since this doesn't immediately reveal a simple solution, we can look at the given solutions [tex]\(\frac{\pi}{4} + k\pi\)[/tex], [tex]\(\frac{\pi}{2} + k\pi\)[/tex], and [tex]\(\frac{\pi}{6} + k\pi\)[/tex], and verify if they satisfy the equation.
Step 5: Verify [tex]\(\frac{\pi}{4} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{4} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{4}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{4}\right) = 1, \quad \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
[tex]\[ \cos^2\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}, \quad \sin^2\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2} \][/tex]
Substitute these into the equation:
[tex]\[ 1 - \frac{1}{2} = \frac{1}{2} \][/tex]
which is:
[tex]\[ \frac{1}{2} = \frac{1}{2} \][/tex]
Clearly, [tex]\(\frac{\pi}{4} + k\pi\)[/tex] is a solution.
Step 6: Verify [tex]\(\frac{\pi}{2} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{2} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{2}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{2}\right) \quad (\text{undefined, meaning vertical asymptote}), \quad \cos\left(\frac{\pi}{2}\right) = 0, \quad \sin\left(\frac{\pi}{2}\right) = 1 \][/tex]
Thus, [tex]\(\tan(x)\)[/tex] is undefined here, except for values of [tex]\(k\)[/tex] where [tex]\(x\)[/tex] aligns with [tex]\(\tan(x)\)[/tex] definition. Hence, we can reject this as it doesn't yield defined values reliably.
Step 7: Verify [tex]\(\frac{\pi}{6} + k\pi\)[/tex]:
[tex]\[ x = \frac{\pi}{6} + k\pi \][/tex]
For [tex]\(x = \frac{\pi}{6}\)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \quad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \][/tex]
[tex]\[ \cos^2\left(\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}, \quad \sin^2\left(\frac{\pi}{6}\right) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \][/tex]
Substitute these into the equation:
[tex]\[ \frac{1}{\sqrt{3}} - \frac{3}{4} = \frac{1}{4} \][/tex]
\]
Converting to common denominator:
[tex]\[ \frac{4}{4\sqrt{3}} - \frac{3}{4} = \frac{1}{4} \][/tex]
Clearly, [tex]\(\frac{\pi}{6} + k\pi\)[/tex] doesn't hold as a solution for [tex]\(\tan(x)\)[/tex].
Thus, the valid solutions are:
[tex]\[ x = \frac{\pi}{4} + k\pi \quad \text{for integer } k \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.