At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the coefficient of the seventh term in the expansion of [tex]\((x + 2y)^{10}\)[/tex], we can use the binomial theorem.
The binomial theorem states that for any positive integer [tex]\(n\)[/tex],
[tex]\[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \][/tex]
where [tex]\(\binom{n}{k}\)[/tex] is the binomial coefficient given by
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
To find the seventh term in the expansion of [tex]\((x + 2y)^{10}\)[/tex], we need to find [tex]\(T_{k+1}\)[/tex] where [tex]\(k+1 = 7\)[/tex]. This implies [tex]\(k = 6\)[/tex].
The general term [tex]\(T_{k+1}\)[/tex] in the binomial expansion is given by:
[tex]\[ T_{k+1} = \binom{n}{k} x^{n-k} (2y)^k \][/tex]
Substitute [tex]\(n = 10\)[/tex] and [tex]\(k = 6\)[/tex]:
[tex]\[ T_7 = \binom{10}{6} x^{10-6} (2y)^6 \][/tex]
Calculate each part of the term:
1. The binomial coefficient [tex]\(\binom{10}{6}\)[/tex]:
[tex]\[ \binom{10}{6} = \frac{10!}{6!(10-6)!} = \frac{10!}{6!4!} \][/tex]
Using precomputed factorial values, we find:
[tex]\[ \binom{10}{6} = 210 \][/tex]
2. The power of [tex]\(x\)[/tex]:
[tex]\[ x^{10-6} = x^4 \][/tex]
3. The power of [tex]\(2y\)[/tex]:
[tex]\[ (2y)^6 = 2^6 y^6 = 64y^6 \][/tex]
Combine all parts together:
[tex]\[ T_7 = 210 x^4 64 y^6 \][/tex]
The coefficient of the seventh term is the product of the binomial coefficient and the constant from [tex]\((2y)^6\)[/tex]:
[tex]\[ \text{Coefficient} = 210 \times 64 = 860160 \][/tex]
Thus, the coefficient of the seventh term in the expansion of [tex]\((x + 2y)^{10}\)[/tex] is [tex]\(860160\)[/tex].
However, provided options do not have a coefficient of 860160, indicating 'e. none' is correct answer.
The binomial theorem states that for any positive integer [tex]\(n\)[/tex],
[tex]\[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \][/tex]
where [tex]\(\binom{n}{k}\)[/tex] is the binomial coefficient given by
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
To find the seventh term in the expansion of [tex]\((x + 2y)^{10}\)[/tex], we need to find [tex]\(T_{k+1}\)[/tex] where [tex]\(k+1 = 7\)[/tex]. This implies [tex]\(k = 6\)[/tex].
The general term [tex]\(T_{k+1}\)[/tex] in the binomial expansion is given by:
[tex]\[ T_{k+1} = \binom{n}{k} x^{n-k} (2y)^k \][/tex]
Substitute [tex]\(n = 10\)[/tex] and [tex]\(k = 6\)[/tex]:
[tex]\[ T_7 = \binom{10}{6} x^{10-6} (2y)^6 \][/tex]
Calculate each part of the term:
1. The binomial coefficient [tex]\(\binom{10}{6}\)[/tex]:
[tex]\[ \binom{10}{6} = \frac{10!}{6!(10-6)!} = \frac{10!}{6!4!} \][/tex]
Using precomputed factorial values, we find:
[tex]\[ \binom{10}{6} = 210 \][/tex]
2. The power of [tex]\(x\)[/tex]:
[tex]\[ x^{10-6} = x^4 \][/tex]
3. The power of [tex]\(2y\)[/tex]:
[tex]\[ (2y)^6 = 2^6 y^6 = 64y^6 \][/tex]
Combine all parts together:
[tex]\[ T_7 = 210 x^4 64 y^6 \][/tex]
The coefficient of the seventh term is the product of the binomial coefficient and the constant from [tex]\((2y)^6\)[/tex]:
[tex]\[ \text{Coefficient} = 210 \times 64 = 860160 \][/tex]
Thus, the coefficient of the seventh term in the expansion of [tex]\((x + 2y)^{10}\)[/tex] is [tex]\(860160\)[/tex].
However, provided options do not have a coefficient of 860160, indicating 'e. none' is correct answer.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.