Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the coefficient of the seventh term in the expansion of [tex]\((x + 2y)^{10}\)[/tex], we can use the binomial theorem.
The binomial theorem states that for any positive integer [tex]\(n\)[/tex],
[tex]\[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \][/tex]
where [tex]\(\binom{n}{k}\)[/tex] is the binomial coefficient given by
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
To find the seventh term in the expansion of [tex]\((x + 2y)^{10}\)[/tex], we need to find [tex]\(T_{k+1}\)[/tex] where [tex]\(k+1 = 7\)[/tex]. This implies [tex]\(k = 6\)[/tex].
The general term [tex]\(T_{k+1}\)[/tex] in the binomial expansion is given by:
[tex]\[ T_{k+1} = \binom{n}{k} x^{n-k} (2y)^k \][/tex]
Substitute [tex]\(n = 10\)[/tex] and [tex]\(k = 6\)[/tex]:
[tex]\[ T_7 = \binom{10}{6} x^{10-6} (2y)^6 \][/tex]
Calculate each part of the term:
1. The binomial coefficient [tex]\(\binom{10}{6}\)[/tex]:
[tex]\[ \binom{10}{6} = \frac{10!}{6!(10-6)!} = \frac{10!}{6!4!} \][/tex]
Using precomputed factorial values, we find:
[tex]\[ \binom{10}{6} = 210 \][/tex]
2. The power of [tex]\(x\)[/tex]:
[tex]\[ x^{10-6} = x^4 \][/tex]
3. The power of [tex]\(2y\)[/tex]:
[tex]\[ (2y)^6 = 2^6 y^6 = 64y^6 \][/tex]
Combine all parts together:
[tex]\[ T_7 = 210 x^4 64 y^6 \][/tex]
The coefficient of the seventh term is the product of the binomial coefficient and the constant from [tex]\((2y)^6\)[/tex]:
[tex]\[ \text{Coefficient} = 210 \times 64 = 860160 \][/tex]
Thus, the coefficient of the seventh term in the expansion of [tex]\((x + 2y)^{10}\)[/tex] is [tex]\(860160\)[/tex].
However, provided options do not have a coefficient of 860160, indicating 'e. none' is correct answer.
The binomial theorem states that for any positive integer [tex]\(n\)[/tex],
[tex]\[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \][/tex]
where [tex]\(\binom{n}{k}\)[/tex] is the binomial coefficient given by
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
To find the seventh term in the expansion of [tex]\((x + 2y)^{10}\)[/tex], we need to find [tex]\(T_{k+1}\)[/tex] where [tex]\(k+1 = 7\)[/tex]. This implies [tex]\(k = 6\)[/tex].
The general term [tex]\(T_{k+1}\)[/tex] in the binomial expansion is given by:
[tex]\[ T_{k+1} = \binom{n}{k} x^{n-k} (2y)^k \][/tex]
Substitute [tex]\(n = 10\)[/tex] and [tex]\(k = 6\)[/tex]:
[tex]\[ T_7 = \binom{10}{6} x^{10-6} (2y)^6 \][/tex]
Calculate each part of the term:
1. The binomial coefficient [tex]\(\binom{10}{6}\)[/tex]:
[tex]\[ \binom{10}{6} = \frac{10!}{6!(10-6)!} = \frac{10!}{6!4!} \][/tex]
Using precomputed factorial values, we find:
[tex]\[ \binom{10}{6} = 210 \][/tex]
2. The power of [tex]\(x\)[/tex]:
[tex]\[ x^{10-6} = x^4 \][/tex]
3. The power of [tex]\(2y\)[/tex]:
[tex]\[ (2y)^6 = 2^6 y^6 = 64y^6 \][/tex]
Combine all parts together:
[tex]\[ T_7 = 210 x^4 64 y^6 \][/tex]
The coefficient of the seventh term is the product of the binomial coefficient and the constant from [tex]\((2y)^6\)[/tex]:
[tex]\[ \text{Coefficient} = 210 \times 64 = 860160 \][/tex]
Thus, the coefficient of the seventh term in the expansion of [tex]\((x + 2y)^{10}\)[/tex] is [tex]\(860160\)[/tex].
However, provided options do not have a coefficient of 860160, indicating 'e. none' is correct answer.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.