Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the equations that represent the line perpendicular to [tex]\(5x - 2y = -6\)[/tex] and passing through the point [tex]\((5, -4)\)[/tex], follow these steps:
1. Find the slope of the given line:
- First, express [tex]\(5x - 2y = -6\)[/tex] in slope-intercept form [tex]\(y = mx + b\)[/tex].
- Rearrange the equation:
[tex]\[ 5x - 2y = -6 \implies -2y = -5x - 6 \implies y = \frac{5}{2}x + 3 \][/tex]
- From the slope-intercept form, the slope [tex]\(m\)[/tex] of the given line is [tex]\(\frac{5}{2}\)[/tex].
2. Determine the slope of the perpendicular line:
- The slope of a line perpendicular to another is the negative reciprocal of the original slope.
- The reciprocal of [tex]\(\frac{5}{2}\)[/tex] is [tex]\(\frac{2}{5}\)[/tex], and taking the negative gives us [tex]\(-\frac{2}{5}\)[/tex].
3. Find the equation of the perpendicular line passing through [tex]\((5, -4)\)[/tex]:
- Use the point-slope form of a line’s equation: [tex]\(y - y_1 = m(x - x1)\)[/tex], where [tex]\((x1, y1)\)[/tex] is the point [tex]\((5, -4)\)[/tex] and [tex]\(m = -\frac{2}{5}\)[/tex].
- Substituting the values, we get:
[tex]\[ y - (-4) = -\frac{2}{5}(x - 5) \][/tex]
- Simplify to get:
[tex]\[ y + 4 = -\frac{2}{5}(x - 5) \][/tex]
4. Convert the equation to standard form [tex]\(Ax + By = C\)[/tex]:
- Multiplying both sides by 5 to eliminate the fraction, we get:
[tex]\[ 5(y + 4) = -2(x - 5) \implies 5y + 20 = -2x + 10 \][/tex]
- Rearrange to standard form:
[tex]\[ 2x + 5y = -10 \][/tex]
5. Identify the correct options:
- From the above steps, verify each given option:
- [tex]\(y = -\frac{2}{5}x - 2\)[/tex]: This is not in point-slope form for the given point.
- [tex]\(2x + 5y = -10\)[/tex]: This matches with the standard form derived.
- [tex]\(2x - 5y = -10\)[/tex]: This does not match the derived form.
- [tex]\(y + 4 = -\frac{2}{5}(x - 5)\)[/tex]: This matches the point-slope form before conversion.
- [tex]\(y - 4 = \frac{5}{2}(x + 5)\)[/tex]: This matches the inverse case and is irrelevant.
By verifying, we find that the correct equations representing the perpendicular line are:
[tex]\[ \boxed{2, 4, 5} \][/tex]
Thus, the correct options are:
1. [tex]\(2x + 5y = -10\)[/tex]
2. [tex]\(y + 4 = -\frac{2}{5}(x - 5)\)[/tex]
3. [tex]\(y - 4 = \frac{5}{2}(x + 5)\)[/tex]
1. Find the slope of the given line:
- First, express [tex]\(5x - 2y = -6\)[/tex] in slope-intercept form [tex]\(y = mx + b\)[/tex].
- Rearrange the equation:
[tex]\[ 5x - 2y = -6 \implies -2y = -5x - 6 \implies y = \frac{5}{2}x + 3 \][/tex]
- From the slope-intercept form, the slope [tex]\(m\)[/tex] of the given line is [tex]\(\frac{5}{2}\)[/tex].
2. Determine the slope of the perpendicular line:
- The slope of a line perpendicular to another is the negative reciprocal of the original slope.
- The reciprocal of [tex]\(\frac{5}{2}\)[/tex] is [tex]\(\frac{2}{5}\)[/tex], and taking the negative gives us [tex]\(-\frac{2}{5}\)[/tex].
3. Find the equation of the perpendicular line passing through [tex]\((5, -4)\)[/tex]:
- Use the point-slope form of a line’s equation: [tex]\(y - y_1 = m(x - x1)\)[/tex], where [tex]\((x1, y1)\)[/tex] is the point [tex]\((5, -4)\)[/tex] and [tex]\(m = -\frac{2}{5}\)[/tex].
- Substituting the values, we get:
[tex]\[ y - (-4) = -\frac{2}{5}(x - 5) \][/tex]
- Simplify to get:
[tex]\[ y + 4 = -\frac{2}{5}(x - 5) \][/tex]
4. Convert the equation to standard form [tex]\(Ax + By = C\)[/tex]:
- Multiplying both sides by 5 to eliminate the fraction, we get:
[tex]\[ 5(y + 4) = -2(x - 5) \implies 5y + 20 = -2x + 10 \][/tex]
- Rearrange to standard form:
[tex]\[ 2x + 5y = -10 \][/tex]
5. Identify the correct options:
- From the above steps, verify each given option:
- [tex]\(y = -\frac{2}{5}x - 2\)[/tex]: This is not in point-slope form for the given point.
- [tex]\(2x + 5y = -10\)[/tex]: This matches with the standard form derived.
- [tex]\(2x - 5y = -10\)[/tex]: This does not match the derived form.
- [tex]\(y + 4 = -\frac{2}{5}(x - 5)\)[/tex]: This matches the point-slope form before conversion.
- [tex]\(y - 4 = \frac{5}{2}(x + 5)\)[/tex]: This matches the inverse case and is irrelevant.
By verifying, we find that the correct equations representing the perpendicular line are:
[tex]\[ \boxed{2, 4, 5} \][/tex]
Thus, the correct options are:
1. [tex]\(2x + 5y = -10\)[/tex]
2. [tex]\(y + 4 = -\frac{2}{5}(x - 5)\)[/tex]
3. [tex]\(y - 4 = \frac{5}{2}(x + 5)\)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.