Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, let's start by finding the roots of the quadratic equation [tex]\(2x^2 - 3x - 6 = 0\)[/tex]. The standard form of a quadratic equation is [tex]\(ax^2 + bx + c = 0\)[/tex]. Here, [tex]\(a = 2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = -6\)[/tex].
1. Calculate the Discriminant: The discriminant of a quadratic equation is given by [tex]\( \Delta = b^2 - 4ac \)[/tex].
[tex]\[ \Delta = (-3)^2 - 4 \cdot 2 \cdot (-6) \][/tex]
[tex]\[ \Delta = 9 + 48 \][/tex]
[tex]\[ \Delta = 57 \][/tex]
So, the discriminant is [tex]\(57\)[/tex].
2. Find the Roots using the Quadratic Formula: The quadratic formula to find the roots of [tex]\(ax^2 + bx + c = 0 \)[/tex] is:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substitute [tex]\(a = 2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(\Delta = 57\)[/tex]:
[tex]\[ \alpha = \frac{-(-3) + \sqrt{57}}{2 \cdot 2} = \frac{3 + \sqrt{57}}{4} \][/tex]
[tex]\[ \beta = \frac{-(-3) - \sqrt{57}}{2 \cdot 2} = \frac{3 - \sqrt{57}}{4} \][/tex]
Thus, the roots are:
[tex]\[ \alpha = \frac{3 + \sqrt{57}}{4}, \quad \beta = \frac{3 - \sqrt{57}}{4} \][/tex]
3. Calculate [tex]\((\alpha - \beta)^2\)[/tex]:
[tex]\[ (\alpha - \beta)^2 = \left( \frac{3 + \sqrt{57}}{4} - \frac{3 - \sqrt{57}}{4} \right)^2 \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ \alpha - \beta = \frac{3 + \sqrt{57}}{4} - \frac{3 - \sqrt{57}}{4} \][/tex]
[tex]\[ \alpha - \beta = \frac{(3 + \sqrt{57}) - (3 - \sqrt{57})}{4} \][/tex]
[tex]\[ \alpha - \beta = \frac{3 + \sqrt{57} - 3 + \sqrt{57}}{4} \][/tex]
[tex]\[ \alpha - \beta = \frac{2\sqrt{57}}{4} \][/tex]
[tex]\[ \alpha - \beta = \frac{\sqrt{57}}{2} \][/tex]
Now square this result:
[tex]\[ (\alpha - \beta)^2 = \left(\frac{\sqrt{57}}{2}\right)^2 = \frac{57}{4} \][/tex]
So, the value of [tex]\((\alpha - \beta)^2\)[/tex] is [tex]\(\frac{57}{4}\)[/tex].
The answer is:
A. [tex]\(\frac{57}{4}\)[/tex]
1. Calculate the Discriminant: The discriminant of a quadratic equation is given by [tex]\( \Delta = b^2 - 4ac \)[/tex].
[tex]\[ \Delta = (-3)^2 - 4 \cdot 2 \cdot (-6) \][/tex]
[tex]\[ \Delta = 9 + 48 \][/tex]
[tex]\[ \Delta = 57 \][/tex]
So, the discriminant is [tex]\(57\)[/tex].
2. Find the Roots using the Quadratic Formula: The quadratic formula to find the roots of [tex]\(ax^2 + bx + c = 0 \)[/tex] is:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substitute [tex]\(a = 2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(\Delta = 57\)[/tex]:
[tex]\[ \alpha = \frac{-(-3) + \sqrt{57}}{2 \cdot 2} = \frac{3 + \sqrt{57}}{4} \][/tex]
[tex]\[ \beta = \frac{-(-3) - \sqrt{57}}{2 \cdot 2} = \frac{3 - \sqrt{57}}{4} \][/tex]
Thus, the roots are:
[tex]\[ \alpha = \frac{3 + \sqrt{57}}{4}, \quad \beta = \frac{3 - \sqrt{57}}{4} \][/tex]
3. Calculate [tex]\((\alpha - \beta)^2\)[/tex]:
[tex]\[ (\alpha - \beta)^2 = \left( \frac{3 + \sqrt{57}}{4} - \frac{3 - \sqrt{57}}{4} \right)^2 \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ \alpha - \beta = \frac{3 + \sqrt{57}}{4} - \frac{3 - \sqrt{57}}{4} \][/tex]
[tex]\[ \alpha - \beta = \frac{(3 + \sqrt{57}) - (3 - \sqrt{57})}{4} \][/tex]
[tex]\[ \alpha - \beta = \frac{3 + \sqrt{57} - 3 + \sqrt{57}}{4} \][/tex]
[tex]\[ \alpha - \beta = \frac{2\sqrt{57}}{4} \][/tex]
[tex]\[ \alpha - \beta = \frac{\sqrt{57}}{2} \][/tex]
Now square this result:
[tex]\[ (\alpha - \beta)^2 = \left(\frac{\sqrt{57}}{2}\right)^2 = \frac{57}{4} \][/tex]
So, the value of [tex]\((\alpha - \beta)^2\)[/tex] is [tex]\(\frac{57}{4}\)[/tex].
The answer is:
A. [tex]\(\frac{57}{4}\)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.