At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Simplify the expression:

[tex]\[ \frac{x^4 - 2x^3 - 195x^2}{x^3 - 3x^2 - 8x - 8} \][/tex]


Sagot :

To solve the problem of dividing the polynomial [tex]\( \frac{x^4 - 2x^3 - 195x^2}{x^3 - 3x^2 - 8x - 8} \)[/tex], we need to perform polynomial long division. Here is the step-by-step solution:

1. Setup the Division: We are dividing [tex]\( x^4 - 2x^3 - 195x^2 \)[/tex] by [tex]\( x^3 - 3x^2 - 8x - 8 \)[/tex].

2. First Division: Divide the leading term of the numerator ([tex]\( x^4 \)[/tex]) by the leading term of the denominator ([tex]\( x^3 \)[/tex]).
[tex]\[ \frac{x^4}{x^3} = x \][/tex]
Therefore, the first term of the quotient is [tex]\( x \)[/tex].

3. Multiply and Subtract: Multiply [tex]\( x \)[/tex] by the entire divisor [tex]\( x^3 - 3x^2 - 8x - 8 \)[/tex] and subtract the result from the numerator:
[tex]\[ x \cdot (x^3 - 3x^2 - 8x - 8) = x^4 - 3x^3 - 8x^2 - 8x \][/tex]
[tex]\[ (x^4 - 2x^3 - 195x^2) - (x^4 - 3x^3 - 8x^2 - 8x) = x^4 - 2x^3 - 195x^2 - x^4 + 3x^3 + 8x^2 + 8x = x^3 - 187x^2 + 8x \][/tex]

4. Repeat the Process: The new numerator is [tex]\( x^3 - 187x^2 + 8x \)[/tex]. Now divide the leading term [tex]\( x^3 \)[/tex] by the leading term [tex]\( x^3 \)[/tex]:
[tex]\[ \frac{x^3}{x^3} = 1 \][/tex]
Therefore, the next term of the quotient is [tex]\( 1 \)[/tex].

5. Multiply and Subtract Again:
[tex]\[ 1 \cdot (x^3 - 3x^2 - 8x - 8) = x^3 - 3x^2 - 8x - 8 \][/tex]
[tex]\[ (x^3 - 187x^2 + 8x) - (x^3 - 3x^2 - 8x - 8) = x^3 - 187x^2 + 8x - x^3 + 3x^2 + 8x + 8 = -184x^2 + 16x + 8 \][/tex]

6. Remainder: Now the new numerator is [tex]\( -184x^2 + 16x + 8 \)[/tex], which has a degree lower than the degree of the divisor [tex]\( x^3 - 3x^2 - 8x - 8 \)[/tex]. Therefore, we stop here. This remaining polynomial is the remainder of the division.

7. Conclusion: The quotient of our division is [tex]\( x + 1 \)[/tex] and the remainder is [tex]\( -184x^2 + 16x + 8 \)[/tex].

Thus, the solution can be written as:
[tex]\[ \frac{x^4 - 2x^3 - 195x^2}{x^3 - 3x^2 - 8x - 8} = (x + 1) + \frac{-184x^2 + 16x + 8}{x^3 - 3x^2 - 8x - 8} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.