Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the given system of linear equations:
[tex]\[ \begin{cases} 6x - 54y = -42 \\ -8x - 3y = 56 \\ \end{cases} \][/tex]
we will follow a detailed, step-by-step approach.
### Step 1: Simplify the Equations (if possible)
First, let's see if the coefficients can be simplified to make the equations easier to work with.
For the first equation:
[tex]\[ 6x - 54y = -42 \][/tex]
Divide every term by 6:
[tex]\[ x - 9y = -7 \][/tex]
So, the first equation simplifies to:
[tex]\[ x - 9y = -7 \quad \text{(Equation 1)} \][/tex]
For the second equation:
[tex]\[ -8x - 3y = 56 \][/tex]
This equation does not simplify any further. Thus, we have:
[tex]\[ \begin{cases} x - 9y = -7 \\ -8x - 3y = 56 \\ \end{cases} \][/tex]
### Step 2: Solve One Equation for One Variable
From Equation 1:
[tex]\[ x - 9y = -7 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = 9y - 7 \quad \text{(Equation 3)} \][/tex]
### Step 3: Substitute the Expression from Step 2 into the Other Equation
Now substitute Equation 3 into the second original equation:
[tex]\[ -8x - 3y = 56 \][/tex]
Substituting [tex]\( x = 9y - 7 \)[/tex]:
[tex]\[ -8(9y - 7) - 3y = 56 \][/tex]
Simplify and solve for [tex]\( y \)[/tex]:
[tex]\[ -72y + 56 - 3y = 56 \][/tex]
Combine like terms:
[tex]\[ -75y + 56 = 56 \][/tex]
Subtract 56 from both sides:
[tex]\[ -75y = 0 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ y = 0 \][/tex]
### Step 4: Substitute Back to Find the Other Variable
Substitute [tex]\( y = 0 \)[/tex] back into Equation 3:
[tex]\[ x = 9(0) - 7 \][/tex]
Simplify:
[tex]\[ x = -7 \][/tex]
### Conclusion
The solution to the system of equations is:
[tex]\[ (x, y) = (-7, 0) \][/tex]
[tex]\[ \begin{cases} 6x - 54y = -42 \\ -8x - 3y = 56 \\ \end{cases} \][/tex]
we will follow a detailed, step-by-step approach.
### Step 1: Simplify the Equations (if possible)
First, let's see if the coefficients can be simplified to make the equations easier to work with.
For the first equation:
[tex]\[ 6x - 54y = -42 \][/tex]
Divide every term by 6:
[tex]\[ x - 9y = -7 \][/tex]
So, the first equation simplifies to:
[tex]\[ x - 9y = -7 \quad \text{(Equation 1)} \][/tex]
For the second equation:
[tex]\[ -8x - 3y = 56 \][/tex]
This equation does not simplify any further. Thus, we have:
[tex]\[ \begin{cases} x - 9y = -7 \\ -8x - 3y = 56 \\ \end{cases} \][/tex]
### Step 2: Solve One Equation for One Variable
From Equation 1:
[tex]\[ x - 9y = -7 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = 9y - 7 \quad \text{(Equation 3)} \][/tex]
### Step 3: Substitute the Expression from Step 2 into the Other Equation
Now substitute Equation 3 into the second original equation:
[tex]\[ -8x - 3y = 56 \][/tex]
Substituting [tex]\( x = 9y - 7 \)[/tex]:
[tex]\[ -8(9y - 7) - 3y = 56 \][/tex]
Simplify and solve for [tex]\( y \)[/tex]:
[tex]\[ -72y + 56 - 3y = 56 \][/tex]
Combine like terms:
[tex]\[ -75y + 56 = 56 \][/tex]
Subtract 56 from both sides:
[tex]\[ -75y = 0 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ y = 0 \][/tex]
### Step 4: Substitute Back to Find the Other Variable
Substitute [tex]\( y = 0 \)[/tex] back into Equation 3:
[tex]\[ x = 9(0) - 7 \][/tex]
Simplify:
[tex]\[ x = -7 \][/tex]
### Conclusion
The solution to the system of equations is:
[tex]\[ (x, y) = (-7, 0) \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.