Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's analyze the given truth table step by step to identify which logic gate it represents:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
### Step 1: Evaluate Each Row
1. For [tex]\( A = 0 \)[/tex] and [tex]\( B = 0 \)[/tex], the output is [tex]\( 0 \)[/tex].
2. For [tex]\( A = 0 \)[/tex] and [tex]\( B = 1 \)[/tex], the output is [tex]\( 1 \)[/tex].
3. For [tex]\( A = 1 \)[/tex] and [tex]\( B = 0 \)[/tex], the output is [tex]\( 1 \)[/tex].
4. For [tex]\( A = 1 \)[/tex] and [tex]\( B = 1 \)[/tex], the output is [tex]\( 0 \)[/tex].
### Step 2: Compare With Known Logic Gates
- OR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline \end{array} \][/tex]
The OR gate doesn't match because the output is 1 when both A and B are 1.
- AND Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \hline \end{array} \][/tex]
The AND gate doesn't match because the output is 1 only when both A and B are 1.
- NAND Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The NAND gate doesn't match because it produces the opposite outputs where the AND gate is 1.
- NOR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The NOR gate doesn't match because it would output a 1 only when both inputs are 0.
- NOT Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & & \text{Output} \\ \hline 0 & & 1 \\ 1 & & 0 \\ \hline \end{array} \][/tex]
The NOT gate does not apply here since it only deals with a single input.
- XOR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The XOR gate matches the given truth table exactly, as it produces a 1 only when the inputs are different.
### Conclusion
The given truth table represents the XOR (exclusive OR) gate. Thus, the correct answer is:
[tex]\[ \boxed{\text{XOR}} \][/tex]
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
### Step 1: Evaluate Each Row
1. For [tex]\( A = 0 \)[/tex] and [tex]\( B = 0 \)[/tex], the output is [tex]\( 0 \)[/tex].
2. For [tex]\( A = 0 \)[/tex] and [tex]\( B = 1 \)[/tex], the output is [tex]\( 1 \)[/tex].
3. For [tex]\( A = 1 \)[/tex] and [tex]\( B = 0 \)[/tex], the output is [tex]\( 1 \)[/tex].
4. For [tex]\( A = 1 \)[/tex] and [tex]\( B = 1 \)[/tex], the output is [tex]\( 0 \)[/tex].
### Step 2: Compare With Known Logic Gates
- OR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline \end{array} \][/tex]
The OR gate doesn't match because the output is 1 when both A and B are 1.
- AND Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \hline \end{array} \][/tex]
The AND gate doesn't match because the output is 1 only when both A and B are 1.
- NAND Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The NAND gate doesn't match because it produces the opposite outputs where the AND gate is 1.
- NOR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The NOR gate doesn't match because it would output a 1 only when both inputs are 0.
- NOT Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & & \text{Output} \\ \hline 0 & & 1 \\ 1 & & 0 \\ \hline \end{array} \][/tex]
The NOT gate does not apply here since it only deals with a single input.
- XOR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The XOR gate matches the given truth table exactly, as it produces a 1 only when the inputs are different.
### Conclusion
The given truth table represents the XOR (exclusive OR) gate. Thus, the correct answer is:
[tex]\[ \boxed{\text{XOR}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.