Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's analyze the given truth table step by step to identify which logic gate it represents:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
### Step 1: Evaluate Each Row
1. For [tex]\( A = 0 \)[/tex] and [tex]\( B = 0 \)[/tex], the output is [tex]\( 0 \)[/tex].
2. For [tex]\( A = 0 \)[/tex] and [tex]\( B = 1 \)[/tex], the output is [tex]\( 1 \)[/tex].
3. For [tex]\( A = 1 \)[/tex] and [tex]\( B = 0 \)[/tex], the output is [tex]\( 1 \)[/tex].
4. For [tex]\( A = 1 \)[/tex] and [tex]\( B = 1 \)[/tex], the output is [tex]\( 0 \)[/tex].
### Step 2: Compare With Known Logic Gates
- OR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline \end{array} \][/tex]
The OR gate doesn't match because the output is 1 when both A and B are 1.
- AND Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \hline \end{array} \][/tex]
The AND gate doesn't match because the output is 1 only when both A and B are 1.
- NAND Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The NAND gate doesn't match because it produces the opposite outputs where the AND gate is 1.
- NOR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The NOR gate doesn't match because it would output a 1 only when both inputs are 0.
- NOT Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & & \text{Output} \\ \hline 0 & & 1 \\ 1 & & 0 \\ \hline \end{array} \][/tex]
The NOT gate does not apply here since it only deals with a single input.
- XOR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The XOR gate matches the given truth table exactly, as it produces a 1 only when the inputs are different.
### Conclusion
The given truth table represents the XOR (exclusive OR) gate. Thus, the correct answer is:
[tex]\[ \boxed{\text{XOR}} \][/tex]
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
### Step 1: Evaluate Each Row
1. For [tex]\( A = 0 \)[/tex] and [tex]\( B = 0 \)[/tex], the output is [tex]\( 0 \)[/tex].
2. For [tex]\( A = 0 \)[/tex] and [tex]\( B = 1 \)[/tex], the output is [tex]\( 1 \)[/tex].
3. For [tex]\( A = 1 \)[/tex] and [tex]\( B = 0 \)[/tex], the output is [tex]\( 1 \)[/tex].
4. For [tex]\( A = 1 \)[/tex] and [tex]\( B = 1 \)[/tex], the output is [tex]\( 0 \)[/tex].
### Step 2: Compare With Known Logic Gates
- OR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline \end{array} \][/tex]
The OR gate doesn't match because the output is 1 when both A and B are 1.
- AND Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \hline \end{array} \][/tex]
The AND gate doesn't match because the output is 1 only when both A and B are 1.
- NAND Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The NAND gate doesn't match because it produces the opposite outputs where the AND gate is 1.
- NOR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The NOR gate doesn't match because it would output a 1 only when both inputs are 0.
- NOT Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & & \text{Output} \\ \hline 0 & & 1 \\ 1 & & 0 \\ \hline \end{array} \][/tex]
The NOT gate does not apply here since it only deals with a single input.
- XOR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The XOR gate matches the given truth table exactly, as it produces a 1 only when the inputs are different.
### Conclusion
The given truth table represents the XOR (exclusive OR) gate. Thus, the correct answer is:
[tex]\[ \boxed{\text{XOR}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.