Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze the given truth table step by step to identify which logic gate it represents:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
### Step 1: Evaluate Each Row
1. For [tex]\( A = 0 \)[/tex] and [tex]\( B = 0 \)[/tex], the output is [tex]\( 0 \)[/tex].
2. For [tex]\( A = 0 \)[/tex] and [tex]\( B = 1 \)[/tex], the output is [tex]\( 1 \)[/tex].
3. For [tex]\( A = 1 \)[/tex] and [tex]\( B = 0 \)[/tex], the output is [tex]\( 1 \)[/tex].
4. For [tex]\( A = 1 \)[/tex] and [tex]\( B = 1 \)[/tex], the output is [tex]\( 0 \)[/tex].
### Step 2: Compare With Known Logic Gates
- OR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline \end{array} \][/tex]
The OR gate doesn't match because the output is 1 when both A and B are 1.
- AND Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \hline \end{array} \][/tex]
The AND gate doesn't match because the output is 1 only when both A and B are 1.
- NAND Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The NAND gate doesn't match because it produces the opposite outputs where the AND gate is 1.
- NOR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The NOR gate doesn't match because it would output a 1 only when both inputs are 0.
- NOT Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & & \text{Output} \\ \hline 0 & & 1 \\ 1 & & 0 \\ \hline \end{array} \][/tex]
The NOT gate does not apply here since it only deals with a single input.
- XOR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The XOR gate matches the given truth table exactly, as it produces a 1 only when the inputs are different.
### Conclusion
The given truth table represents the XOR (exclusive OR) gate. Thus, the correct answer is:
[tex]\[ \boxed{\text{XOR}} \][/tex]
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
### Step 1: Evaluate Each Row
1. For [tex]\( A = 0 \)[/tex] and [tex]\( B = 0 \)[/tex], the output is [tex]\( 0 \)[/tex].
2. For [tex]\( A = 0 \)[/tex] and [tex]\( B = 1 \)[/tex], the output is [tex]\( 1 \)[/tex].
3. For [tex]\( A = 1 \)[/tex] and [tex]\( B = 0 \)[/tex], the output is [tex]\( 1 \)[/tex].
4. For [tex]\( A = 1 \)[/tex] and [tex]\( B = 1 \)[/tex], the output is [tex]\( 0 \)[/tex].
### Step 2: Compare With Known Logic Gates
- OR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline \end{array} \][/tex]
The OR gate doesn't match because the output is 1 when both A and B are 1.
- AND Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \hline \end{array} \][/tex]
The AND gate doesn't match because the output is 1 only when both A and B are 1.
- NAND Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The NAND gate doesn't match because it produces the opposite outputs where the AND gate is 1.
- NOR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The NOR gate doesn't match because it would output a 1 only when both inputs are 0.
- NOT Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & & \text{Output} \\ \hline 0 & & 1 \\ 1 & & 0 \\ \hline \end{array} \][/tex]
The NOT gate does not apply here since it only deals with a single input.
- XOR Gate:
[tex]\[ \begin{array}{|c|c|c|} \hline A & B & \text{Output} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \hline \end{array} \][/tex]
The XOR gate matches the given truth table exactly, as it produces a 1 only when the inputs are different.
### Conclusion
The given truth table represents the XOR (exclusive OR) gate. Thus, the correct answer is:
[tex]\[ \boxed{\text{XOR}} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.