Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

The graph of which function passes through the point [tex]\left(0, \frac{\pi}{2}\right)[/tex]?

A. [tex]y = \cos^{-1}(x)[/tex]
B. [tex]y = \csc^{-1}(x)[/tex]
C. [tex]y = \sec^{-1}(x)[/tex]
D. [tex]y = \sin^{-1}(x)[/tex]

Sagot :

To determine which function passes through the point [tex]\(\left(0, \frac{\pi}{2}\right)\)[/tex], we need to evaluate each of the given inverse trigonometric functions at [tex]\(x = 0\)[/tex] and see which one results in [tex]\(\frac{\pi}{2}\)[/tex].

### Step-by-Step Solution:

1. Evaluate [tex]\(y = \cos^{-1}(x)\)[/tex] at [tex]\(x = 0\)[/tex]:
[tex]\[ y = \cos^{-1}(0) \][/tex]
The value of [tex]\(\cos^{-1}(0)\)[/tex] is [tex]\(\frac{\pi}{2}\)[/tex]. Thus, [tex]\((0, \frac{\pi}{2})\)[/tex] lies on the graph of [tex]\(y = \cos^{-1}(x)\)[/tex].

2. Evaluate [tex]\(y = \csc^{-1}(x)\)[/tex] at [tex]\(x = 0\)[/tex]:
[tex]\[ y = \csc^{-1}(0) \][/tex]
The value [tex]\(\csc^{-1}(0)\)[/tex] is undefined because [tex]\(\csc(x) = \frac{1}{\sin(x)}\)[/tex] is undefined for [tex]\(x = 0\)[/tex]. Hence, [tex]\((0, \frac{\pi}{2})\)[/tex] does not lie on the graph of [tex]\(y = \csc^{-1}(x)\)[/tex].

3. Evaluate [tex]\(y = \sec^{-1}(x)\)[/tex] at [tex]\(x = 0\)[/tex]:
[tex]\[ y = \sec^{-1}(0) \][/tex]
The value [tex]\(\sec^{-1}(0)\)[/tex] is also undefined because [tex]\(\sec(x) = \frac{1}{\cos(x)}\)[/tex] is undefined for [tex]\(x = 0\)[/tex]. So, [tex]\((0, \frac{\pi}{2})\)[/tex] does not lie on the graph of [tex]\(y = \sec^{-1}(x)\)[/tex].

4. Evaluate [tex]\(y = \sin^{-1}(x)\)[/tex] at [tex]\(x = 0\)[/tex]:
[tex]\[ y = \sin^{-1}(0) \][/tex]
The value of [tex]\(\sin^{-1}(0)\)[/tex] is 0. Thus, [tex]\((0, 0)\)[/tex] lies on the graph of [tex]\(y = \sin^{-1}(x)\)[/tex]. Therefore, [tex]\((0, \frac{\pi}{2})\)[/tex] does not lie on the graph of [tex]\(y = \sin^{-1}(x)\)[/tex].

### Conclusion:
After evaluating each function at [tex]\(x = 0\)[/tex], we see that only [tex]\(y = \cos^{-1}(x)\)[/tex] satisfies [tex]\((0, \frac{\pi}{2})\)[/tex]. Therefore, the graph of the function [tex]\(y = \cos^{-1}(x)\)[/tex] passes through the point [tex]\(\left(0, \frac{\pi}{2}\right)\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.