Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the equation [tex]\(-3 \tan^2(x) + 1 = 0\)[/tex], let’s go through the process step by step.
1. Isolate [tex]\(\tan^2(x)\)[/tex]:
[tex]\[ -3 \tan^2(x) + 1 = 0 \][/tex]
[tex]\[ -3 \tan^2(x) = -1 \][/tex]
[tex]\[ \tan^2(x) = \frac{1}{3} \][/tex]
2. Take the square root on both sides:
[tex]\[ \tan(x) = \pm \sqrt{\frac{1}{3}} \][/tex]
[tex]\[ \tan(x) = \pm \frac{1}{\sqrt{3}} \][/tex]
Simplifying, we get:
[tex]\[ \tan(x) = \pm \frac{\sqrt{3}}{3} \][/tex]
3. Identify the angles whose tangent values are [tex]\(\frac{\sqrt{3}}{3}\)[/tex] and [tex]\(-\frac{\sqrt{3}}{3}\)[/tex]:
[tex]\(\tan(x) = \frac{\sqrt{3}}{3}\)[/tex] occurs at [tex]\(x = \frac{\pi}{6} + k\pi\)[/tex], where [tex]\(k\)[/tex] is any integer.
[tex]\(\tan(x) = -\frac{\sqrt{3}}{3}\)[/tex] occurs at [tex]\(x = \frac{5\pi}{6} + k\pi\)[/tex], where [tex]\(k\)[/tex] is any integer.
4. Combine the two sets of solutions:
Therefore, the complete set of solutions to the equation [tex]\(-3 \tan^2(x) + 1 = 0\)[/tex] in radians is:
[tex]\[ x = \frac{\pi}{6} + k\pi \quad \text{and} \quad x = \frac{5\pi}{6} + k\pi \quad \text{for integer } k \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{6} + k\pi \quad \text{and} \quad \frac{5\pi}{6} + k\pi} \][/tex]
1. Isolate [tex]\(\tan^2(x)\)[/tex]:
[tex]\[ -3 \tan^2(x) + 1 = 0 \][/tex]
[tex]\[ -3 \tan^2(x) = -1 \][/tex]
[tex]\[ \tan^2(x) = \frac{1}{3} \][/tex]
2. Take the square root on both sides:
[tex]\[ \tan(x) = \pm \sqrt{\frac{1}{3}} \][/tex]
[tex]\[ \tan(x) = \pm \frac{1}{\sqrt{3}} \][/tex]
Simplifying, we get:
[tex]\[ \tan(x) = \pm \frac{\sqrt{3}}{3} \][/tex]
3. Identify the angles whose tangent values are [tex]\(\frac{\sqrt{3}}{3}\)[/tex] and [tex]\(-\frac{\sqrt{3}}{3}\)[/tex]:
[tex]\(\tan(x) = \frac{\sqrt{3}}{3}\)[/tex] occurs at [tex]\(x = \frac{\pi}{6} + k\pi\)[/tex], where [tex]\(k\)[/tex] is any integer.
[tex]\(\tan(x) = -\frac{\sqrt{3}}{3}\)[/tex] occurs at [tex]\(x = \frac{5\pi}{6} + k\pi\)[/tex], where [tex]\(k\)[/tex] is any integer.
4. Combine the two sets of solutions:
Therefore, the complete set of solutions to the equation [tex]\(-3 \tan^2(x) + 1 = 0\)[/tex] in radians is:
[tex]\[ x = \frac{\pi}{6} + k\pi \quad \text{and} \quad x = \frac{5\pi}{6} + k\pi \quad \text{for integer } k \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{6} + k\pi \quad \text{and} \quad \frac{5\pi}{6} + k\pi} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.