Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the equation [tex]\(-3 \tan^2(x) + 1 = 0\)[/tex], let’s go through the process step by step.
1. Isolate [tex]\(\tan^2(x)\)[/tex]:
[tex]\[ -3 \tan^2(x) + 1 = 0 \][/tex]
[tex]\[ -3 \tan^2(x) = -1 \][/tex]
[tex]\[ \tan^2(x) = \frac{1}{3} \][/tex]
2. Take the square root on both sides:
[tex]\[ \tan(x) = \pm \sqrt{\frac{1}{3}} \][/tex]
[tex]\[ \tan(x) = \pm \frac{1}{\sqrt{3}} \][/tex]
Simplifying, we get:
[tex]\[ \tan(x) = \pm \frac{\sqrt{3}}{3} \][/tex]
3. Identify the angles whose tangent values are [tex]\(\frac{\sqrt{3}}{3}\)[/tex] and [tex]\(-\frac{\sqrt{3}}{3}\)[/tex]:
[tex]\(\tan(x) = \frac{\sqrt{3}}{3}\)[/tex] occurs at [tex]\(x = \frac{\pi}{6} + k\pi\)[/tex], where [tex]\(k\)[/tex] is any integer.
[tex]\(\tan(x) = -\frac{\sqrt{3}}{3}\)[/tex] occurs at [tex]\(x = \frac{5\pi}{6} + k\pi\)[/tex], where [tex]\(k\)[/tex] is any integer.
4. Combine the two sets of solutions:
Therefore, the complete set of solutions to the equation [tex]\(-3 \tan^2(x) + 1 = 0\)[/tex] in radians is:
[tex]\[ x = \frac{\pi}{6} + k\pi \quad \text{and} \quad x = \frac{5\pi}{6} + k\pi \quad \text{for integer } k \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{6} + k\pi \quad \text{and} \quad \frac{5\pi}{6} + k\pi} \][/tex]
1. Isolate [tex]\(\tan^2(x)\)[/tex]:
[tex]\[ -3 \tan^2(x) + 1 = 0 \][/tex]
[tex]\[ -3 \tan^2(x) = -1 \][/tex]
[tex]\[ \tan^2(x) = \frac{1}{3} \][/tex]
2. Take the square root on both sides:
[tex]\[ \tan(x) = \pm \sqrt{\frac{1}{3}} \][/tex]
[tex]\[ \tan(x) = \pm \frac{1}{\sqrt{3}} \][/tex]
Simplifying, we get:
[tex]\[ \tan(x) = \pm \frac{\sqrt{3}}{3} \][/tex]
3. Identify the angles whose tangent values are [tex]\(\frac{\sqrt{3}}{3}\)[/tex] and [tex]\(-\frac{\sqrt{3}}{3}\)[/tex]:
[tex]\(\tan(x) = \frac{\sqrt{3}}{3}\)[/tex] occurs at [tex]\(x = \frac{\pi}{6} + k\pi\)[/tex], where [tex]\(k\)[/tex] is any integer.
[tex]\(\tan(x) = -\frac{\sqrt{3}}{3}\)[/tex] occurs at [tex]\(x = \frac{5\pi}{6} + k\pi\)[/tex], where [tex]\(k\)[/tex] is any integer.
4. Combine the two sets of solutions:
Therefore, the complete set of solutions to the equation [tex]\(-3 \tan^2(x) + 1 = 0\)[/tex] in radians is:
[tex]\[ x = \frac{\pi}{6} + k\pi \quad \text{and} \quad x = \frac{5\pi}{6} + k\pi \quad \text{for integer } k \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\frac{\pi}{6} + k\pi \quad \text{and} \quad \frac{5\pi}{6} + k\pi} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.