Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the number of molecules in a 23.45 g sample of copper(II) hydroxide, [tex]\( Cu(OH)_2 \)[/tex], we need to follow these steps:
1. Convert the mass of the sample to moles:
The molar mass of copper(II) hydroxide ([tex]\( Cu(OH)_2 \)[/tex]) is given as [tex]\( 97.562 \, \text{g/mol} \)[/tex]. This means that 1 mole of [tex]\( Cu(OH)_2 \)[/tex] weighs [tex]\( 97.562 \, \text{g} \)[/tex].
First, calculate the number of moles in a [tex]\( 23.45 \, \text{g} \)[/tex] sample using the relationship:
[tex]\[ \text{Number of moles} = \frac{\text{Mass (g)}}{\text{Molar Mass (g/mol)}} \][/tex]
So,
[tex]\[ \text{Number of moles} = \frac{23.45 \, \text{g}}{97.562 \, \text{g/mol}} \approx 0.2404 \, \text{mol} \][/tex]
2. Convert moles to molecules:
One mole of any substance contains Avogadro's number of molecules, which is [tex]\( 6.022 \times 10^{23} \)[/tex] molecules per mole.
To find the number of molecules in the given number of moles, use the relationship:
[tex]\[ \text{Number of molecules} = \text{Number of moles} \times \text{Avogadro's number} \][/tex]
Thus,
[tex]\[ \text{Number of molecules} = 0.2404 \, \text{mol} \times 6.022 \times 10^{23} \, \text{molecules/mol} \][/tex]
[tex]\[ \text{Number of molecules} \approx 1.447 \times 10^{23} \, \text{molecules} \][/tex]
In conclusion, a 23.45 g sample of [tex]\( Cu(OH)_2 \)[/tex] contains approximately [tex]\( 0.2404 \, \text{moles} \)[/tex] and [tex]\( 1.447 \times 10^{23} \)[/tex] molecules of [tex]\( Cu(OH)_2 \)[/tex]. These results are expressed to the correct number of significant figures based on the given values in the problem.
1. Convert the mass of the sample to moles:
The molar mass of copper(II) hydroxide ([tex]\( Cu(OH)_2 \)[/tex]) is given as [tex]\( 97.562 \, \text{g/mol} \)[/tex]. This means that 1 mole of [tex]\( Cu(OH)_2 \)[/tex] weighs [tex]\( 97.562 \, \text{g} \)[/tex].
First, calculate the number of moles in a [tex]\( 23.45 \, \text{g} \)[/tex] sample using the relationship:
[tex]\[ \text{Number of moles} = \frac{\text{Mass (g)}}{\text{Molar Mass (g/mol)}} \][/tex]
So,
[tex]\[ \text{Number of moles} = \frac{23.45 \, \text{g}}{97.562 \, \text{g/mol}} \approx 0.2404 \, \text{mol} \][/tex]
2. Convert moles to molecules:
One mole of any substance contains Avogadro's number of molecules, which is [tex]\( 6.022 \times 10^{23} \)[/tex] molecules per mole.
To find the number of molecules in the given number of moles, use the relationship:
[tex]\[ \text{Number of molecules} = \text{Number of moles} \times \text{Avogadro's number} \][/tex]
Thus,
[tex]\[ \text{Number of molecules} = 0.2404 \, \text{mol} \times 6.022 \times 10^{23} \, \text{molecules/mol} \][/tex]
[tex]\[ \text{Number of molecules} \approx 1.447 \times 10^{23} \, \text{molecules} \][/tex]
In conclusion, a 23.45 g sample of [tex]\( Cu(OH)_2 \)[/tex] contains approximately [tex]\( 0.2404 \, \text{moles} \)[/tex] and [tex]\( 1.447 \times 10^{23} \)[/tex] molecules of [tex]\( Cu(OH)_2 \)[/tex]. These results are expressed to the correct number of significant figures based on the given values in the problem.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.