Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve the given system of equations step-by-step:
The system of equations is:
[tex]\[ \begin{cases} 12x + y = 14 \quad &\text{(1)} \\ 6x - 2 = 58 \quad &\text{(2)} \end{cases} \][/tex]
First, we need to simplify equation (2):
[tex]\[ 6x - 2 = 58 \][/tex]
Add 2 to both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 6x = 58 + 2 \][/tex]
[tex]\[ 6x = 60 \][/tex]
Now, divide both sides by 6 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{60}{6} \][/tex]
[tex]\[ x = 10 \][/tex]
Next, we substitute [tex]\(x = 10\)[/tex] into equation (1) to find [tex]\(y\)[/tex]:
[tex]\[ 12x + y = 14 \][/tex]
Substitute [tex]\(x = 10\)[/tex] into the equation:
[tex]\[ 12(10) + y = 14 \][/tex]
[tex]\[ 120 + y = 14 \][/tex]
Subtract 120 from both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = 14 - 120 \][/tex]
[tex]\[ y = -106 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ x = 10 \quad \text{and} \quad y = -106 \][/tex]
Thus, the solution is [tex]\((10, -106)\)[/tex].
The system of equations is:
[tex]\[ \begin{cases} 12x + y = 14 \quad &\text{(1)} \\ 6x - 2 = 58 \quad &\text{(2)} \end{cases} \][/tex]
First, we need to simplify equation (2):
[tex]\[ 6x - 2 = 58 \][/tex]
Add 2 to both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 6x = 58 + 2 \][/tex]
[tex]\[ 6x = 60 \][/tex]
Now, divide both sides by 6 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{60}{6} \][/tex]
[tex]\[ x = 10 \][/tex]
Next, we substitute [tex]\(x = 10\)[/tex] into equation (1) to find [tex]\(y\)[/tex]:
[tex]\[ 12x + y = 14 \][/tex]
Substitute [tex]\(x = 10\)[/tex] into the equation:
[tex]\[ 12(10) + y = 14 \][/tex]
[tex]\[ 120 + y = 14 \][/tex]
Subtract 120 from both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = 14 - 120 \][/tex]
[tex]\[ y = -106 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ x = 10 \quad \text{and} \quad y = -106 \][/tex]
Thus, the solution is [tex]\((10, -106)\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.