Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's solve each part step-by-step.
### 3a). Find the remainder when [tex]\(x^3 + x^2 + x - 2\)[/tex] is divided by [tex]\(x + 3\)[/tex]
We will use the Remainder Theorem for this. The Remainder Theorem states that the remainder of the division of a polynomial [tex]\( f(x) \)[/tex] by a linear divisor [tex]\( x - a \)[/tex] is [tex]\( f(a) \)[/tex].
In this case, we are dividing [tex]\( f(x) = x^3 + x^2 + x - 2 \)[/tex] by [tex]\( x + 3 \)[/tex]. Notice that [tex]\( x + 3 \)[/tex] can be written as [tex]\( x - (-3) \)[/tex]. Hence, [tex]\( a = -3 \)[/tex].
1. Substitute [tex]\( x = -3 \)[/tex] into the polynomial:
[tex]\[ f(-3) = (-3)^3 + (-3)^2 + (-3) - 2 \][/tex]
2. Calculate each term:
[tex]\[ (-3)^3 = -27 \][/tex]
[tex]\[ (-3)^2 = 9 \][/tex]
[tex]\[ (-3) = -3 \][/tex]
[tex]\[ -2 = -2 \][/tex]
3. Add the results together:
[tex]\[ f(-3) = -27 + 9 - 3 - 2 \][/tex]
[tex]\[ = -27 + 9 = -18 \][/tex]
[tex]\[ -18 - 3 = -21 \][/tex]
[tex]\[ -21 - 2 = -23 \][/tex]
Therefore, the remainder when [tex]\( x^3 + x^2 + x - 2 \)[/tex] is divided by [tex]\( x + 3 \)[/tex] is [tex]\(-23\)[/tex].
### 3b). If [tex]\(x-1\)[/tex] is a factor of [tex]\(x^3 - 7x + 6\)[/tex], what is the remainder when [tex]\(x^3 - 7x + 6\)[/tex] is divided by [tex]\(x-1\)[/tex]?
Given that [tex]\(x-1\)[/tex] is a factor of [tex]\(x^3 - 7x + 6\)[/tex], it means that when we divide [tex]\( f(x) = x^3 - 7x + 6 \)[/tex] by [tex]\( x - 1 \)[/tex], the remainder should be [tex]\( 0 \)[/tex]. This is derived from the Factor Theorem, which states that if [tex]\( x - a \)[/tex] is a factor of a polynomial [tex]\( f(x) \)[/tex], then [tex]\( f(a) = 0 \)[/tex].
1. Confirm that [tex]\(x = 1\)[/tex] makes the polynomial zero:
[tex]\[ f(1) = 1^3 - 7(1) + 6 \][/tex]
2. Simplify:
[tex]\[ f(1) = 1 - 7 + 6 \][/tex]
[tex]\[ = 1 - 7 = -6 \][/tex]
[tex]\[ -6 + 6 = 0 \][/tex]
Therefore, the remainder when [tex]\( x^3 - 7x + 6 \)[/tex] is divided by [tex]\( x - 1 \)[/tex] is [tex]\(0\)[/tex].
### 3a). Find the remainder when [tex]\(x^3 + x^2 + x - 2\)[/tex] is divided by [tex]\(x + 3\)[/tex]
We will use the Remainder Theorem for this. The Remainder Theorem states that the remainder of the division of a polynomial [tex]\( f(x) \)[/tex] by a linear divisor [tex]\( x - a \)[/tex] is [tex]\( f(a) \)[/tex].
In this case, we are dividing [tex]\( f(x) = x^3 + x^2 + x - 2 \)[/tex] by [tex]\( x + 3 \)[/tex]. Notice that [tex]\( x + 3 \)[/tex] can be written as [tex]\( x - (-3) \)[/tex]. Hence, [tex]\( a = -3 \)[/tex].
1. Substitute [tex]\( x = -3 \)[/tex] into the polynomial:
[tex]\[ f(-3) = (-3)^3 + (-3)^2 + (-3) - 2 \][/tex]
2. Calculate each term:
[tex]\[ (-3)^3 = -27 \][/tex]
[tex]\[ (-3)^2 = 9 \][/tex]
[tex]\[ (-3) = -3 \][/tex]
[tex]\[ -2 = -2 \][/tex]
3. Add the results together:
[tex]\[ f(-3) = -27 + 9 - 3 - 2 \][/tex]
[tex]\[ = -27 + 9 = -18 \][/tex]
[tex]\[ -18 - 3 = -21 \][/tex]
[tex]\[ -21 - 2 = -23 \][/tex]
Therefore, the remainder when [tex]\( x^3 + x^2 + x - 2 \)[/tex] is divided by [tex]\( x + 3 \)[/tex] is [tex]\(-23\)[/tex].
### 3b). If [tex]\(x-1\)[/tex] is a factor of [tex]\(x^3 - 7x + 6\)[/tex], what is the remainder when [tex]\(x^3 - 7x + 6\)[/tex] is divided by [tex]\(x-1\)[/tex]?
Given that [tex]\(x-1\)[/tex] is a factor of [tex]\(x^3 - 7x + 6\)[/tex], it means that when we divide [tex]\( f(x) = x^3 - 7x + 6 \)[/tex] by [tex]\( x - 1 \)[/tex], the remainder should be [tex]\( 0 \)[/tex]. This is derived from the Factor Theorem, which states that if [tex]\( x - a \)[/tex] is a factor of a polynomial [tex]\( f(x) \)[/tex], then [tex]\( f(a) = 0 \)[/tex].
1. Confirm that [tex]\(x = 1\)[/tex] makes the polynomial zero:
[tex]\[ f(1) = 1^3 - 7(1) + 6 \][/tex]
2. Simplify:
[tex]\[ f(1) = 1 - 7 + 6 \][/tex]
[tex]\[ = 1 - 7 = -6 \][/tex]
[tex]\[ -6 + 6 = 0 \][/tex]
Therefore, the remainder when [tex]\( x^3 - 7x + 6 \)[/tex] is divided by [tex]\( x - 1 \)[/tex] is [tex]\(0\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.