Answered

Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

3a) Find the remainder when [tex]$x^3 + x^2 + x - 2$[/tex] is divided by [tex]$x + 3$[/tex].

3b) If [tex][tex]$x - 1$[/tex][/tex] is a factor of [tex]$x^3 - 7x + 6$[/tex], what is the remainder when [tex]$x^3 - 7x + 6$[/tex] is divided by [tex][tex]$x - 1$[/tex][/tex]?


Sagot :

Sure, let's solve each part step-by-step.

### 3a). Find the remainder when [tex]\(x^3 + x^2 + x - 2\)[/tex] is divided by [tex]\(x + 3\)[/tex]

We will use the Remainder Theorem for this. The Remainder Theorem states that the remainder of the division of a polynomial [tex]\( f(x) \)[/tex] by a linear divisor [tex]\( x - a \)[/tex] is [tex]\( f(a) \)[/tex].

In this case, we are dividing [tex]\( f(x) = x^3 + x^2 + x - 2 \)[/tex] by [tex]\( x + 3 \)[/tex]. Notice that [tex]\( x + 3 \)[/tex] can be written as [tex]\( x - (-3) \)[/tex]. Hence, [tex]\( a = -3 \)[/tex].

1. Substitute [tex]\( x = -3 \)[/tex] into the polynomial:
[tex]\[ f(-3) = (-3)^3 + (-3)^2 + (-3) - 2 \][/tex]
2. Calculate each term:
[tex]\[ (-3)^3 = -27 \][/tex]
[tex]\[ (-3)^2 = 9 \][/tex]
[tex]\[ (-3) = -3 \][/tex]
[tex]\[ -2 = -2 \][/tex]
3. Add the results together:
[tex]\[ f(-3) = -27 + 9 - 3 - 2 \][/tex]
[tex]\[ = -27 + 9 = -18 \][/tex]
[tex]\[ -18 - 3 = -21 \][/tex]
[tex]\[ -21 - 2 = -23 \][/tex]

Therefore, the remainder when [tex]\( x^3 + x^2 + x - 2 \)[/tex] is divided by [tex]\( x + 3 \)[/tex] is [tex]\(-23\)[/tex].

### 3b). If [tex]\(x-1\)[/tex] is a factor of [tex]\(x^3 - 7x + 6\)[/tex], what is the remainder when [tex]\(x^3 - 7x + 6\)[/tex] is divided by [tex]\(x-1\)[/tex]?

Given that [tex]\(x-1\)[/tex] is a factor of [tex]\(x^3 - 7x + 6\)[/tex], it means that when we divide [tex]\( f(x) = x^3 - 7x + 6 \)[/tex] by [tex]\( x - 1 \)[/tex], the remainder should be [tex]\( 0 \)[/tex]. This is derived from the Factor Theorem, which states that if [tex]\( x - a \)[/tex] is a factor of a polynomial [tex]\( f(x) \)[/tex], then [tex]\( f(a) = 0 \)[/tex].

1. Confirm that [tex]\(x = 1\)[/tex] makes the polynomial zero:
[tex]\[ f(1) = 1^3 - 7(1) + 6 \][/tex]
2. Simplify:
[tex]\[ f(1) = 1 - 7 + 6 \][/tex]
[tex]\[ = 1 - 7 = -6 \][/tex]
[tex]\[ -6 + 6 = 0 \][/tex]

Therefore, the remainder when [tex]\( x^3 - 7x + 6 \)[/tex] is divided by [tex]\( x - 1 \)[/tex] is [tex]\(0\)[/tex].