At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the inequality [tex]\(-1.7 \leq x < 1\)[/tex] and find all the integer values that [tex]\(x\)[/tex] can take, let’s break it down step by step:
1. Identify the bounds of the inequality:
- The lower bound is [tex]\(-1.7\)[/tex]
- The upper bound is [tex]\(1\)[/tex]
2. Determine the range of integers within these bounds:
- An integer is a whole number, so we need to find whole numbers that lie within [tex]\(-1.7\)[/tex] and [tex]\(1\)[/tex].
3. Consider the lower bound [tex]\(-1.7\)[/tex]:
- Since [tex]\(-1.7\)[/tex] is not an integer, we look at the next integer greater than [tex]\(-1.7\)[/tex], which is [tex]\(-1\)[/tex].
- [tex]\(\-1\)[/tex] is greater than [tex]\(-1.7\)[/tex] and is within the allowed range.
4. Consider the upper bound [tex]\(1\)[/tex]:
- The inequality is strict on the upper side, meaning [tex]\(x\)[/tex] must be less than [tex]\(1\)[/tex] but not equal to [tex]\(1\)[/tex].
- The largest integer that is less than [tex]\(1\)[/tex] is [tex]\(0\)[/tex].
5. Collect all integers between [tex]\(-1.7\)[/tex] (inclusive) and [tex]\(1\)[/tex] (exclusive):
- The integers within the interval [tex]\(-1\)[/tex] to [tex]\(1\)[/tex] (exclusive) are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
6. Final conclusion:
- The integer values that satisfy the inequality [tex]\(-1.7 \leq x < 1\)[/tex] are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
Therefore, the integer values that [tex]\(x\)[/tex] can take are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
1. Identify the bounds of the inequality:
- The lower bound is [tex]\(-1.7\)[/tex]
- The upper bound is [tex]\(1\)[/tex]
2. Determine the range of integers within these bounds:
- An integer is a whole number, so we need to find whole numbers that lie within [tex]\(-1.7\)[/tex] and [tex]\(1\)[/tex].
3. Consider the lower bound [tex]\(-1.7\)[/tex]:
- Since [tex]\(-1.7\)[/tex] is not an integer, we look at the next integer greater than [tex]\(-1.7\)[/tex], which is [tex]\(-1\)[/tex].
- [tex]\(\-1\)[/tex] is greater than [tex]\(-1.7\)[/tex] and is within the allowed range.
4. Consider the upper bound [tex]\(1\)[/tex]:
- The inequality is strict on the upper side, meaning [tex]\(x\)[/tex] must be less than [tex]\(1\)[/tex] but not equal to [tex]\(1\)[/tex].
- The largest integer that is less than [tex]\(1\)[/tex] is [tex]\(0\)[/tex].
5. Collect all integers between [tex]\(-1.7\)[/tex] (inclusive) and [tex]\(1\)[/tex] (exclusive):
- The integers within the interval [tex]\(-1\)[/tex] to [tex]\(1\)[/tex] (exclusive) are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
6. Final conclusion:
- The integer values that satisfy the inequality [tex]\(-1.7 \leq x < 1\)[/tex] are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
Therefore, the integer values that [tex]\(x\)[/tex] can take are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.