Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the inequality [tex]\(-1.7 \leq x < 1\)[/tex] and find all the integer values that [tex]\(x\)[/tex] can take, let’s break it down step by step:
1. Identify the bounds of the inequality:
- The lower bound is [tex]\(-1.7\)[/tex]
- The upper bound is [tex]\(1\)[/tex]
2. Determine the range of integers within these bounds:
- An integer is a whole number, so we need to find whole numbers that lie within [tex]\(-1.7\)[/tex] and [tex]\(1\)[/tex].
3. Consider the lower bound [tex]\(-1.7\)[/tex]:
- Since [tex]\(-1.7\)[/tex] is not an integer, we look at the next integer greater than [tex]\(-1.7\)[/tex], which is [tex]\(-1\)[/tex].
- [tex]\(\-1\)[/tex] is greater than [tex]\(-1.7\)[/tex] and is within the allowed range.
4. Consider the upper bound [tex]\(1\)[/tex]:
- The inequality is strict on the upper side, meaning [tex]\(x\)[/tex] must be less than [tex]\(1\)[/tex] but not equal to [tex]\(1\)[/tex].
- The largest integer that is less than [tex]\(1\)[/tex] is [tex]\(0\)[/tex].
5. Collect all integers between [tex]\(-1.7\)[/tex] (inclusive) and [tex]\(1\)[/tex] (exclusive):
- The integers within the interval [tex]\(-1\)[/tex] to [tex]\(1\)[/tex] (exclusive) are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
6. Final conclusion:
- The integer values that satisfy the inequality [tex]\(-1.7 \leq x < 1\)[/tex] are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
Therefore, the integer values that [tex]\(x\)[/tex] can take are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
1. Identify the bounds of the inequality:
- The lower bound is [tex]\(-1.7\)[/tex]
- The upper bound is [tex]\(1\)[/tex]
2. Determine the range of integers within these bounds:
- An integer is a whole number, so we need to find whole numbers that lie within [tex]\(-1.7\)[/tex] and [tex]\(1\)[/tex].
3. Consider the lower bound [tex]\(-1.7\)[/tex]:
- Since [tex]\(-1.7\)[/tex] is not an integer, we look at the next integer greater than [tex]\(-1.7\)[/tex], which is [tex]\(-1\)[/tex].
- [tex]\(\-1\)[/tex] is greater than [tex]\(-1.7\)[/tex] and is within the allowed range.
4. Consider the upper bound [tex]\(1\)[/tex]:
- The inequality is strict on the upper side, meaning [tex]\(x\)[/tex] must be less than [tex]\(1\)[/tex] but not equal to [tex]\(1\)[/tex].
- The largest integer that is less than [tex]\(1\)[/tex] is [tex]\(0\)[/tex].
5. Collect all integers between [tex]\(-1.7\)[/tex] (inclusive) and [tex]\(1\)[/tex] (exclusive):
- The integers within the interval [tex]\(-1\)[/tex] to [tex]\(1\)[/tex] (exclusive) are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
6. Final conclusion:
- The integer values that satisfy the inequality [tex]\(-1.7 \leq x < 1\)[/tex] are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
Therefore, the integer values that [tex]\(x\)[/tex] can take are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.