Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the inequality [tex]\(-1.7 \leq x < 1\)[/tex] and find all the integer values that [tex]\(x\)[/tex] can take, let’s break it down step by step:
1. Identify the bounds of the inequality:
- The lower bound is [tex]\(-1.7\)[/tex]
- The upper bound is [tex]\(1\)[/tex]
2. Determine the range of integers within these bounds:
- An integer is a whole number, so we need to find whole numbers that lie within [tex]\(-1.7\)[/tex] and [tex]\(1\)[/tex].
3. Consider the lower bound [tex]\(-1.7\)[/tex]:
- Since [tex]\(-1.7\)[/tex] is not an integer, we look at the next integer greater than [tex]\(-1.7\)[/tex], which is [tex]\(-1\)[/tex].
- [tex]\(\-1\)[/tex] is greater than [tex]\(-1.7\)[/tex] and is within the allowed range.
4. Consider the upper bound [tex]\(1\)[/tex]:
- The inequality is strict on the upper side, meaning [tex]\(x\)[/tex] must be less than [tex]\(1\)[/tex] but not equal to [tex]\(1\)[/tex].
- The largest integer that is less than [tex]\(1\)[/tex] is [tex]\(0\)[/tex].
5. Collect all integers between [tex]\(-1.7\)[/tex] (inclusive) and [tex]\(1\)[/tex] (exclusive):
- The integers within the interval [tex]\(-1\)[/tex] to [tex]\(1\)[/tex] (exclusive) are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
6. Final conclusion:
- The integer values that satisfy the inequality [tex]\(-1.7 \leq x < 1\)[/tex] are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
Therefore, the integer values that [tex]\(x\)[/tex] can take are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
1. Identify the bounds of the inequality:
- The lower bound is [tex]\(-1.7\)[/tex]
- The upper bound is [tex]\(1\)[/tex]
2. Determine the range of integers within these bounds:
- An integer is a whole number, so we need to find whole numbers that lie within [tex]\(-1.7\)[/tex] and [tex]\(1\)[/tex].
3. Consider the lower bound [tex]\(-1.7\)[/tex]:
- Since [tex]\(-1.7\)[/tex] is not an integer, we look at the next integer greater than [tex]\(-1.7\)[/tex], which is [tex]\(-1\)[/tex].
- [tex]\(\-1\)[/tex] is greater than [tex]\(-1.7\)[/tex] and is within the allowed range.
4. Consider the upper bound [tex]\(1\)[/tex]:
- The inequality is strict on the upper side, meaning [tex]\(x\)[/tex] must be less than [tex]\(1\)[/tex] but not equal to [tex]\(1\)[/tex].
- The largest integer that is less than [tex]\(1\)[/tex] is [tex]\(0\)[/tex].
5. Collect all integers between [tex]\(-1.7\)[/tex] (inclusive) and [tex]\(1\)[/tex] (exclusive):
- The integers within the interval [tex]\(-1\)[/tex] to [tex]\(1\)[/tex] (exclusive) are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
6. Final conclusion:
- The integer values that satisfy the inequality [tex]\(-1.7 \leq x < 1\)[/tex] are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
Therefore, the integer values that [tex]\(x\)[/tex] can take are [tex]\(-1\)[/tex] and [tex]\(0\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.