Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To expand and fully simplify the expression [tex]\(5 b (b + 3) - b (3 b - 2)\)[/tex], we will carry out the following steps:
1. Distribute the multiplication within each term.
2. Combine like terms to simplify the expression.
Let's break it down step by step.
### Step 1: Distribute within each term
First, we'll distribute the terms inside the parentheses for each part of the expression separately.
For the term [tex]\(5 b (b + 3)\)[/tex]:
[tex]\[ 5 b (b + 3) = 5 b \cdot b + 5 b \cdot 3 = 5 b^2 + 15 b \][/tex]
Next, for the term [tex]\(-b (3 b - 2)\)[/tex]:
[tex]\[ -b (3 b - 2) = -b \cdot 3 b - (-b) \cdot 2 = -3 b^2 + 2 b \][/tex]
### Step 2: Combine like terms
Now, we take both expanded parts and combine them:
[tex]\[ 5 b^2 + 15 b - 3 b^2 + 2 b \][/tex]
Group the [tex]\(b^2\)[/tex] terms together and the [tex]\(b\)[/tex] terms together:
[tex]\[ (5 b^2 - 3 b^2) + (15 b + 2 b) \][/tex]
Combine the coefficients of each type of term:
[tex]\[ 2 b^2 + 17 b \][/tex]
So, the fully expanded and simplified expression is:
[tex]\[ \boxed{2 b^2 + 17 b} \][/tex]
1. Distribute the multiplication within each term.
2. Combine like terms to simplify the expression.
Let's break it down step by step.
### Step 1: Distribute within each term
First, we'll distribute the terms inside the parentheses for each part of the expression separately.
For the term [tex]\(5 b (b + 3)\)[/tex]:
[tex]\[ 5 b (b + 3) = 5 b \cdot b + 5 b \cdot 3 = 5 b^2 + 15 b \][/tex]
Next, for the term [tex]\(-b (3 b - 2)\)[/tex]:
[tex]\[ -b (3 b - 2) = -b \cdot 3 b - (-b) \cdot 2 = -3 b^2 + 2 b \][/tex]
### Step 2: Combine like terms
Now, we take both expanded parts and combine them:
[tex]\[ 5 b^2 + 15 b - 3 b^2 + 2 b \][/tex]
Group the [tex]\(b^2\)[/tex] terms together and the [tex]\(b\)[/tex] terms together:
[tex]\[ (5 b^2 - 3 b^2) + (15 b + 2 b) \][/tex]
Combine the coefficients of each type of term:
[tex]\[ 2 b^2 + 17 b \][/tex]
So, the fully expanded and simplified expression is:
[tex]\[ \boxed{2 b^2 + 17 b} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.