Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Calculate the centripetal acceleration of the object.

Given:
[tex]\[
\begin{array}{l}
s = \frac{900}{10} \\
s = 90
\end{array}
\][/tex]

An object of mass [tex]$25 \, \text{kg}$[/tex] moves at [tex]$5 \, \text{m/s}$[/tex] around a circular path of radius [tex]$5 \, \text{m}$[/tex].

Calculate the centripetal acceleration of the object.

Sagot :

Sure, let's break it down step by step:

1. Understand the given values:
- Mass of the object: [tex]\( 25 \)[/tex] hectograms (hg)
- Velocity of the object: [tex]\( 5 \)[/tex] meters per second (m/s)
- Radius of the circular path: [tex]\( 5 \)[/tex] meters (m)

2. Convert the mass into kilograms (kg):
- We need to convert the mass from hectograms to kilograms because the standard SI unit for mass is kilograms.
- 1 hectogram is equivalent to 0.1 kilogram.
- Therefore, [tex]\( 25 \)[/tex] hectograms is equal to [tex]\( 25 \times 0.1 = 2.5 \)[/tex] kilograms.

3. Recall the formula for centripetal acceleration:
- The centripetal acceleration [tex]\( a_c \)[/tex] of an object moving in a circular path is given by the formula:
[tex]\[ a_c = \frac{v^2}{r} \][/tex]
where [tex]\( v \)[/tex] is the velocity and [tex]\( r \)[/tex] is the radius of the circular path.

4. Substitute the known values into the formula:
- Velocity [tex]\( v = 5 \)[/tex] m/s
- Radius [tex]\( r = 5 \)[/tex] m
- Substitute these values into the formula:
[tex]\[ a_c = \frac{(5)^2}{5} \][/tex]

5. Perform the calculation:
- Calculate the velocity squared:
[tex]\[ 5^2 = 25 \][/tex]
- Divide by the radius:
[tex]\[ a_c = \frac{25}{5} = 5 \, \text{m/s}^2 \][/tex]

6. Conclusion:
- The centripetal acceleration of the object is [tex]\( 5 \)[/tex] meters per second squared ([tex]\( \text{m/s}^2 \)[/tex]).

So, to summarize, the mass of the object in kilograms is [tex]\( 2.5 \, \text{kg} \)[/tex], the velocity is [tex]\( 5 \, \text{m/s} \)[/tex], the radius is [tex]\( 5 \, \text{m} \)[/tex], and the centripetal acceleration calculated is [tex]\( 5.0 \, \text{m/s}^2 \)[/tex].