Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To simplify the radical [tex]\( \sqrt{84} \)[/tex], follow these steps:
1. Find the prime factorization of 84:
- Begin by dividing 84 by the smallest prime number, which is 2.
[tex]\[ 84 \div 2 = 42 \][/tex]
- Next, divide 42 by 2 again.
[tex]\[ 42 \div 2 = 21 \][/tex]
- Finally, divide 21 by the next smallest prime number, which is 3.
[tex]\[ 21 \div 3 = 7 \][/tex]
- Now we have 7, which is a prime number.
The prime factorization of 84 is:
[tex]\[ 84 = 2^2 \times 3 \times 7 \][/tex]
2. Apply the property of square roots that allows us to simplify radical expressions:
- Recall that [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex].
3. Group the factors to identify perfect squares:
- Observe that [tex]\( \sqrt{84} = \sqrt{2^2 \times 3 \times 7} \)[/tex].
- Notice that [tex]\(2^2\)[/tex] is a perfect square.
4. Simplify the expression:
- Extract the square root of [tex]\(2^2\)[/tex], which is 2, outside the radical.
[tex]\[ \sqrt{84} = \sqrt{2^2 \times 3 \times 7} = \sqrt{2^2} \times \sqrt{3 \times 7} = 2 \times \sqrt{21} \][/tex]
Thus, the simplified form of [tex]\( \sqrt{84} \)[/tex] is:
[tex]\[ 2\sqrt{21} \][/tex]
Therefore, the correct answer is:
[tex]\[ 2 \sqrt{21} \][/tex]
1. Find the prime factorization of 84:
- Begin by dividing 84 by the smallest prime number, which is 2.
[tex]\[ 84 \div 2 = 42 \][/tex]
- Next, divide 42 by 2 again.
[tex]\[ 42 \div 2 = 21 \][/tex]
- Finally, divide 21 by the next smallest prime number, which is 3.
[tex]\[ 21 \div 3 = 7 \][/tex]
- Now we have 7, which is a prime number.
The prime factorization of 84 is:
[tex]\[ 84 = 2^2 \times 3 \times 7 \][/tex]
2. Apply the property of square roots that allows us to simplify radical expressions:
- Recall that [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex].
3. Group the factors to identify perfect squares:
- Observe that [tex]\( \sqrt{84} = \sqrt{2^2 \times 3 \times 7} \)[/tex].
- Notice that [tex]\(2^2\)[/tex] is a perfect square.
4. Simplify the expression:
- Extract the square root of [tex]\(2^2\)[/tex], which is 2, outside the radical.
[tex]\[ \sqrt{84} = \sqrt{2^2 \times 3 \times 7} = \sqrt{2^2} \times \sqrt{3 \times 7} = 2 \times \sqrt{21} \][/tex]
Thus, the simplified form of [tex]\( \sqrt{84} \)[/tex] is:
[tex]\[ 2\sqrt{21} \][/tex]
Therefore, the correct answer is:
[tex]\[ 2 \sqrt{21} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.