Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To rationalize the denominator of the expression [tex]\(\frac{14n}{\sqrt{20n^3}}\)[/tex], follow these steps:
1. Rewrite the original expression:
[tex]\[ \frac{14n}{\sqrt{20n^3}} \][/tex]
2. Simplify the expression inside the square root:
Notice that [tex]\(20n^3\)[/tex] can be broken down into its prime factors and powers of [tex]\(n\)[/tex]:
[tex]\[ 20 = 4 \times 5 = 2^2 \times 5 \][/tex]
Hence,
[tex]\[ \sqrt{20n^3} = \sqrt{(2^2 \times 5 \times n^3)} \][/tex]
3. Simplify the square root by separating perfect squares:
[tex]\[ \sqrt{2^2 \times 5 \times n^3} = \sqrt{(2^2 \times n^2) \times (5 \times n)} = 2n\sqrt{5n} \][/tex]
4. Rewrite the original expression using this simplified denominator:
[tex]\[ \frac{14n}{2n\sqrt{5n}} \][/tex]
5. Simplify the fraction by canceling common factors:
[tex]\[ \frac{14n}{2n\sqrt{5n}} = \frac{7}{\sqrt{5n}} \][/tex]
6. Rationalize the denominator by multiplying the numerator and the denominator by [tex]\(\sqrt{5n}\)[/tex]:
[tex]\[ \frac{7}{\sqrt{5n}} \times \frac{\sqrt{5n}}{\sqrt{5n}} = \frac{7\sqrt{5n}}{5n} \][/tex]
Thus, the simplified expression with the rationalized denominator is:
[tex]\[ \frac{7\sqrt{5n}}{5n} \][/tex]
This is fully simplified, and the denominator is rationalized.
1. Rewrite the original expression:
[tex]\[ \frac{14n}{\sqrt{20n^3}} \][/tex]
2. Simplify the expression inside the square root:
Notice that [tex]\(20n^3\)[/tex] can be broken down into its prime factors and powers of [tex]\(n\)[/tex]:
[tex]\[ 20 = 4 \times 5 = 2^2 \times 5 \][/tex]
Hence,
[tex]\[ \sqrt{20n^3} = \sqrt{(2^2 \times 5 \times n^3)} \][/tex]
3. Simplify the square root by separating perfect squares:
[tex]\[ \sqrt{2^2 \times 5 \times n^3} = \sqrt{(2^2 \times n^2) \times (5 \times n)} = 2n\sqrt{5n} \][/tex]
4. Rewrite the original expression using this simplified denominator:
[tex]\[ \frac{14n}{2n\sqrt{5n}} \][/tex]
5. Simplify the fraction by canceling common factors:
[tex]\[ \frac{14n}{2n\sqrt{5n}} = \frac{7}{\sqrt{5n}} \][/tex]
6. Rationalize the denominator by multiplying the numerator and the denominator by [tex]\(\sqrt{5n}\)[/tex]:
[tex]\[ \frac{7}{\sqrt{5n}} \times \frac{\sqrt{5n}}{\sqrt{5n}} = \frac{7\sqrt{5n}}{5n} \][/tex]
Thus, the simplified expression with the rationalized denominator is:
[tex]\[ \frac{7\sqrt{5n}}{5n} \][/tex]
This is fully simplified, and the denominator is rationalized.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.