Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To simplify the expression [tex]\(\frac{(6^{-4})^{-9}}{6^6}\)[/tex], we need to follow the rules of exponents very carefully. Let's break it down step by step.
1. Simplify the numerator [tex]\((6^{-4})^{-9}\)[/tex]:
- When we have an exponent raised to another exponent, we use the power of a power rule [tex]\( (a^m)^n = a^{m \cdot n} \)[/tex].
- Apply this rule: [tex]\((6^{-4})^{-9} = 6^{-4 \cdot (-9)} = 6^{36}\)[/tex].
2. Rewrite the expression with the simplified numerator:
- After simplifying the numerator, our expression becomes: [tex]\(\frac{6^{36}}{6^6}\)[/tex].
3. Simplify the fraction [tex]\(\frac{6^{36}}{6^6}\)[/tex]:
- When dividing numbers with the same base, we subtract the exponents: [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex].
- Apply this rule: [tex]\(\frac{6^{36}}{6^6} = 6^{36 - 6} = 6^{30}\)[/tex].
The final simplified form of the expression is [tex]\(\boxed{6^{30}}\)[/tex].
1. Simplify the numerator [tex]\((6^{-4})^{-9}\)[/tex]:
- When we have an exponent raised to another exponent, we use the power of a power rule [tex]\( (a^m)^n = a^{m \cdot n} \)[/tex].
- Apply this rule: [tex]\((6^{-4})^{-9} = 6^{-4 \cdot (-9)} = 6^{36}\)[/tex].
2. Rewrite the expression with the simplified numerator:
- After simplifying the numerator, our expression becomes: [tex]\(\frac{6^{36}}{6^6}\)[/tex].
3. Simplify the fraction [tex]\(\frac{6^{36}}{6^6}\)[/tex]:
- When dividing numbers with the same base, we subtract the exponents: [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex].
- Apply this rule: [tex]\(\frac{6^{36}}{6^6} = 6^{36 - 6} = 6^{30}\)[/tex].
The final simplified form of the expression is [tex]\(\boxed{6^{30}}\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.