Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's go through the detailed step-by-step solution to find the enthalpy of combustion of 1 mole of [tex]\( C_6H_6 \)[/tex] (benzene) when it completely reacts with oxygen.
Given the balanced chemical equation for the combustion of benzene:
[tex]\[ 2 C_6H_6(g) + 15 O_2(g) \rightarrow 12 CO_2(g) + 6 H_2O(g) \][/tex]
We are also given the standard enthalpies of formation ([tex]\(\Delta H_f^\circ\)[/tex]) of the compounds involved:
- [tex]\(C_6H_6(g)\)[/tex]: [tex]\( \Delta H_f^\circ = 82.90 \, \text{kJ/mol} \)[/tex]
- [tex]\(CO_2(g)\)[/tex]: [tex]\( \Delta H_f^\circ = -393.50 \, \text{kJ/mol} \)[/tex]
- [tex]\(H_2O(g)\)[/tex]: [tex]\( \Delta H_f^\circ = -241.82 \, \text{kJ/mol} \)[/tex]
The enthalpy of the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) is calculated using the enthalpies of formation of the products and reactants.
First, calculate the total enthalpy of formation of the reactants and products:
1. Reactants:
- For [tex]\( C_6H_6(g) \)[/tex]:
[tex]\[ \text{Total} = 2 \times 82.90 \, \text{kJ/mol} \][/tex]
2. Products:
- For [tex]\( CO_2(g) \)[/tex]:
[tex]\[ \text{Total} = 12 \times (-393.50) \, \text{kJ/mol} \][/tex]
- For [tex]\( H_2O(g) \)[/tex]:
[tex]\[ \text{Total} = 6 \times (-241.82) \, \text{kJ/mol} \][/tex]
Now sum up these values to calculate the total enthalpy for the reactants and products:
- Total enthalpy of reactants:
[tex]\[ 2 \times 82.90 = 165.80 \, \text{kJ} \][/tex]
- Total enthalpy of products:
[tex]\[ (12 \times -393.50) + (6 \times -241.82) = -4722.00 - 1450.92 = -6172.92 \, \text{kJ} \][/tex]
The enthalpy change of the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) can be calculated using:
[tex]\[ \Delta H_{\text{reaction}} = \text{Total enthalpy of products} - \text{Total enthalpy of reactants} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -6172.92 \, \text{kJ} - 165.80 \, \text{kJ} = -6338.72 \, \text{kJ} \][/tex]
This is the enthalpy change for the combustion of 2 moles of benzene. Therefore, to find the enthalpy change for 1 mole of benzene, we divide this result by 2:
[tex]\[ \Delta H_{\text{combustion}} = \frac{\Delta H_{\text{reaction}}}{2} = \frac{-6338.72 \, \text{kJ}}{2} = -3169.36 \, \text{kJ/mol} \][/tex]
Thus, the enthalpy of combustion for 1 mole of [tex]\( C_6H_6 \)[/tex] is:
[tex]\[ -3169.36 \, \text{kJ/mol} \][/tex]
Therefore, the correct answer from the given options is:
[tex]\[ \boxed{-3169 \, \text{kJ/mol}} \][/tex]
This indicates that when 1 mole of benzene completely reacts with oxygen, the enthalpy of combustion is approximately [tex]\( -3169 \, \text{kJ/mol} \)[/tex].
Given the balanced chemical equation for the combustion of benzene:
[tex]\[ 2 C_6H_6(g) + 15 O_2(g) \rightarrow 12 CO_2(g) + 6 H_2O(g) \][/tex]
We are also given the standard enthalpies of formation ([tex]\(\Delta H_f^\circ\)[/tex]) of the compounds involved:
- [tex]\(C_6H_6(g)\)[/tex]: [tex]\( \Delta H_f^\circ = 82.90 \, \text{kJ/mol} \)[/tex]
- [tex]\(CO_2(g)\)[/tex]: [tex]\( \Delta H_f^\circ = -393.50 \, \text{kJ/mol} \)[/tex]
- [tex]\(H_2O(g)\)[/tex]: [tex]\( \Delta H_f^\circ = -241.82 \, \text{kJ/mol} \)[/tex]
The enthalpy of the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) is calculated using the enthalpies of formation of the products and reactants.
First, calculate the total enthalpy of formation of the reactants and products:
1. Reactants:
- For [tex]\( C_6H_6(g) \)[/tex]:
[tex]\[ \text{Total} = 2 \times 82.90 \, \text{kJ/mol} \][/tex]
2. Products:
- For [tex]\( CO_2(g) \)[/tex]:
[tex]\[ \text{Total} = 12 \times (-393.50) \, \text{kJ/mol} \][/tex]
- For [tex]\( H_2O(g) \)[/tex]:
[tex]\[ \text{Total} = 6 \times (-241.82) \, \text{kJ/mol} \][/tex]
Now sum up these values to calculate the total enthalpy for the reactants and products:
- Total enthalpy of reactants:
[tex]\[ 2 \times 82.90 = 165.80 \, \text{kJ} \][/tex]
- Total enthalpy of products:
[tex]\[ (12 \times -393.50) + (6 \times -241.82) = -4722.00 - 1450.92 = -6172.92 \, \text{kJ} \][/tex]
The enthalpy change of the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) can be calculated using:
[tex]\[ \Delta H_{\text{reaction}} = \text{Total enthalpy of products} - \text{Total enthalpy of reactants} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -6172.92 \, \text{kJ} - 165.80 \, \text{kJ} = -6338.72 \, \text{kJ} \][/tex]
This is the enthalpy change for the combustion of 2 moles of benzene. Therefore, to find the enthalpy change for 1 mole of benzene, we divide this result by 2:
[tex]\[ \Delta H_{\text{combustion}} = \frac{\Delta H_{\text{reaction}}}{2} = \frac{-6338.72 \, \text{kJ}}{2} = -3169.36 \, \text{kJ/mol} \][/tex]
Thus, the enthalpy of combustion for 1 mole of [tex]\( C_6H_6 \)[/tex] is:
[tex]\[ -3169.36 \, \text{kJ/mol} \][/tex]
Therefore, the correct answer from the given options is:
[tex]\[ \boxed{-3169 \, \text{kJ/mol}} \][/tex]
This indicates that when 1 mole of benzene completely reacts with oxygen, the enthalpy of combustion is approximately [tex]\( -3169 \, \text{kJ/mol} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.