Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the value of the linear correlation coefficient [tex]\( r \)[/tex] between the temperatures and the growth of the plant, follow these steps:
1. List the paired data:
[tex]\[ \begin{array}{c|c} \text{Temperature (x)} & \text{Growth (y)} \\ \hline 62 & 36 \\ 76 & 39 \\ 50 & 50 \\ 51 & 13 \\ 71 & 33 \\ 46 & 33 \\ 51 & 17 \\ 44 & 6 \\ 79 & 16 \\ \end{array} \][/tex]
2. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{62 + 76 + 50 + 51 + 71 + 46 + 51 + 44 + 79}{9} = \frac{530}{9} \approx 58.89 \][/tex]
[tex]\[ \bar{y} = \frac{36 + 39 + 50 + 13 + 33 + 33 + 17 + 6 + 16}{9} = \frac{243}{9} = 27 \][/tex]
3. Calculate the variance and covariance terms:
[tex]\[ S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 \][/tex]
[tex]\[ S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 \][/tex]
[tex]\[ S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
4. Apply these to find the values:
Given the complexity of manual calculations, trust that [tex]\( S_{xx} \)[/tex], [tex]\( S_{yy} \)[/tex], and [tex]\( S_{xy} \)[/tex] have been calculated accurately.
5. Use the formula for the correlation coefficient [tex]\( r \)[/tex]:
[tex]\[ r = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}} \][/tex]
After accurate calculations, we find that the correlation coefficient [tex]\( r \)[/tex] is approximately [tex]\( 0.196 \)[/tex].
6. Compare the result to the given choices:
A. 0.256
B. 0
C. -0.210
D. 0.196
The value closest to our calculated correlation coefficient [tex]\( r \)[/tex] is [tex]\( 0.196 \)[/tex], which corresponds to option D.
Therefore, the value of the linear correlation coefficient [tex]\( r \)[/tex] is:
[tex]\[ \boxed{0.196} \][/tex]
1. List the paired data:
[tex]\[ \begin{array}{c|c} \text{Temperature (x)} & \text{Growth (y)} \\ \hline 62 & 36 \\ 76 & 39 \\ 50 & 50 \\ 51 & 13 \\ 71 & 33 \\ 46 & 33 \\ 51 & 17 \\ 44 & 6 \\ 79 & 16 \\ \end{array} \][/tex]
2. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{62 + 76 + 50 + 51 + 71 + 46 + 51 + 44 + 79}{9} = \frac{530}{9} \approx 58.89 \][/tex]
[tex]\[ \bar{y} = \frac{36 + 39 + 50 + 13 + 33 + 33 + 17 + 6 + 16}{9} = \frac{243}{9} = 27 \][/tex]
3. Calculate the variance and covariance terms:
[tex]\[ S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 \][/tex]
[tex]\[ S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 \][/tex]
[tex]\[ S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
4. Apply these to find the values:
Given the complexity of manual calculations, trust that [tex]\( S_{xx} \)[/tex], [tex]\( S_{yy} \)[/tex], and [tex]\( S_{xy} \)[/tex] have been calculated accurately.
5. Use the formula for the correlation coefficient [tex]\( r \)[/tex]:
[tex]\[ r = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}} \][/tex]
After accurate calculations, we find that the correlation coefficient [tex]\( r \)[/tex] is approximately [tex]\( 0.196 \)[/tex].
6. Compare the result to the given choices:
A. 0.256
B. 0
C. -0.210
D. 0.196
The value closest to our calculated correlation coefficient [tex]\( r \)[/tex] is [tex]\( 0.196 \)[/tex], which corresponds to option D.
Therefore, the value of the linear correlation coefficient [tex]\( r \)[/tex] is:
[tex]\[ \boxed{0.196} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.