Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the value of the linear correlation coefficient [tex]\( r \)[/tex] between the temperatures and the growth of the plant, follow these steps:
1. List the paired data:
[tex]\[ \begin{array}{c|c} \text{Temperature (x)} & \text{Growth (y)} \\ \hline 62 & 36 \\ 76 & 39 \\ 50 & 50 \\ 51 & 13 \\ 71 & 33 \\ 46 & 33 \\ 51 & 17 \\ 44 & 6 \\ 79 & 16 \\ \end{array} \][/tex]
2. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{62 + 76 + 50 + 51 + 71 + 46 + 51 + 44 + 79}{9} = \frac{530}{9} \approx 58.89 \][/tex]
[tex]\[ \bar{y} = \frac{36 + 39 + 50 + 13 + 33 + 33 + 17 + 6 + 16}{9} = \frac{243}{9} = 27 \][/tex]
3. Calculate the variance and covariance terms:
[tex]\[ S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 \][/tex]
[tex]\[ S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 \][/tex]
[tex]\[ S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
4. Apply these to find the values:
Given the complexity of manual calculations, trust that [tex]\( S_{xx} \)[/tex], [tex]\( S_{yy} \)[/tex], and [tex]\( S_{xy} \)[/tex] have been calculated accurately.
5. Use the formula for the correlation coefficient [tex]\( r \)[/tex]:
[tex]\[ r = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}} \][/tex]
After accurate calculations, we find that the correlation coefficient [tex]\( r \)[/tex] is approximately [tex]\( 0.196 \)[/tex].
6. Compare the result to the given choices:
A. 0.256
B. 0
C. -0.210
D. 0.196
The value closest to our calculated correlation coefficient [tex]\( r \)[/tex] is [tex]\( 0.196 \)[/tex], which corresponds to option D.
Therefore, the value of the linear correlation coefficient [tex]\( r \)[/tex] is:
[tex]\[ \boxed{0.196} \][/tex]
1. List the paired data:
[tex]\[ \begin{array}{c|c} \text{Temperature (x)} & \text{Growth (y)} \\ \hline 62 & 36 \\ 76 & 39 \\ 50 & 50 \\ 51 & 13 \\ 71 & 33 \\ 46 & 33 \\ 51 & 17 \\ 44 & 6 \\ 79 & 16 \\ \end{array} \][/tex]
2. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{62 + 76 + 50 + 51 + 71 + 46 + 51 + 44 + 79}{9} = \frac{530}{9} \approx 58.89 \][/tex]
[tex]\[ \bar{y} = \frac{36 + 39 + 50 + 13 + 33 + 33 + 17 + 6 + 16}{9} = \frac{243}{9} = 27 \][/tex]
3. Calculate the variance and covariance terms:
[tex]\[ S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 \][/tex]
[tex]\[ S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 \][/tex]
[tex]\[ S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
4. Apply these to find the values:
Given the complexity of manual calculations, trust that [tex]\( S_{xx} \)[/tex], [tex]\( S_{yy} \)[/tex], and [tex]\( S_{xy} \)[/tex] have been calculated accurately.
5. Use the formula for the correlation coefficient [tex]\( r \)[/tex]:
[tex]\[ r = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}} \][/tex]
After accurate calculations, we find that the correlation coefficient [tex]\( r \)[/tex] is approximately [tex]\( 0.196 \)[/tex].
6. Compare the result to the given choices:
A. 0.256
B. 0
C. -0.210
D. 0.196
The value closest to our calculated correlation coefficient [tex]\( r \)[/tex] is [tex]\( 0.196 \)[/tex], which corresponds to option D.
Therefore, the value of the linear correlation coefficient [tex]\( r \)[/tex] is:
[tex]\[ \boxed{0.196} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.