Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the value of the linear correlation coefficient [tex]\( r \)[/tex] between the temperatures and the growth of the plant, follow these steps:
1. List the paired data:
[tex]\[ \begin{array}{c|c} \text{Temperature (x)} & \text{Growth (y)} \\ \hline 62 & 36 \\ 76 & 39 \\ 50 & 50 \\ 51 & 13 \\ 71 & 33 \\ 46 & 33 \\ 51 & 17 \\ 44 & 6 \\ 79 & 16 \\ \end{array} \][/tex]
2. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{62 + 76 + 50 + 51 + 71 + 46 + 51 + 44 + 79}{9} = \frac{530}{9} \approx 58.89 \][/tex]
[tex]\[ \bar{y} = \frac{36 + 39 + 50 + 13 + 33 + 33 + 17 + 6 + 16}{9} = \frac{243}{9} = 27 \][/tex]
3. Calculate the variance and covariance terms:
[tex]\[ S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 \][/tex]
[tex]\[ S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 \][/tex]
[tex]\[ S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
4. Apply these to find the values:
Given the complexity of manual calculations, trust that [tex]\( S_{xx} \)[/tex], [tex]\( S_{yy} \)[/tex], and [tex]\( S_{xy} \)[/tex] have been calculated accurately.
5. Use the formula for the correlation coefficient [tex]\( r \)[/tex]:
[tex]\[ r = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}} \][/tex]
After accurate calculations, we find that the correlation coefficient [tex]\( r \)[/tex] is approximately [tex]\( 0.196 \)[/tex].
6. Compare the result to the given choices:
A. 0.256
B. 0
C. -0.210
D. 0.196
The value closest to our calculated correlation coefficient [tex]\( r \)[/tex] is [tex]\( 0.196 \)[/tex], which corresponds to option D.
Therefore, the value of the linear correlation coefficient [tex]\( r \)[/tex] is:
[tex]\[ \boxed{0.196} \][/tex]
1. List the paired data:
[tex]\[ \begin{array}{c|c} \text{Temperature (x)} & \text{Growth (y)} \\ \hline 62 & 36 \\ 76 & 39 \\ 50 & 50 \\ 51 & 13 \\ 71 & 33 \\ 46 & 33 \\ 51 & 17 \\ 44 & 6 \\ 79 & 16 \\ \end{array} \][/tex]
2. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{62 + 76 + 50 + 51 + 71 + 46 + 51 + 44 + 79}{9} = \frac{530}{9} \approx 58.89 \][/tex]
[tex]\[ \bar{y} = \frac{36 + 39 + 50 + 13 + 33 + 33 + 17 + 6 + 16}{9} = \frac{243}{9} = 27 \][/tex]
3. Calculate the variance and covariance terms:
[tex]\[ S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 \][/tex]
[tex]\[ S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 \][/tex]
[tex]\[ S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
4. Apply these to find the values:
Given the complexity of manual calculations, trust that [tex]\( S_{xx} \)[/tex], [tex]\( S_{yy} \)[/tex], and [tex]\( S_{xy} \)[/tex] have been calculated accurately.
5. Use the formula for the correlation coefficient [tex]\( r \)[/tex]:
[tex]\[ r = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}} \][/tex]
After accurate calculations, we find that the correlation coefficient [tex]\( r \)[/tex] is approximately [tex]\( 0.196 \)[/tex].
6. Compare the result to the given choices:
A. 0.256
B. 0
C. -0.210
D. 0.196
The value closest to our calculated correlation coefficient [tex]\( r \)[/tex] is [tex]\( 0.196 \)[/tex], which corresponds to option D.
Therefore, the value of the linear correlation coefficient [tex]\( r \)[/tex] is:
[tex]\[ \boxed{0.196} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.