Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's solve the equation [tex]\( a = \frac{x + c}{x - b} \)[/tex] to make [tex]\( x \)[/tex] the subject.
Step-by-Step Solution:
1. Start with the given equation:
[tex]\[ a = \frac{x + c}{x - b} \][/tex]
2. To clear the fraction, multiply both sides of the equation by [tex]\( x - b \)[/tex]:
[tex]\[ a(x - b) = x + c \][/tex]
3. Distribute [tex]\( a \)[/tex] on the left-hand side:
[tex]\[ ax - ab = x + c \][/tex]
4. To isolate [tex]\( x \)[/tex], first get all terms involving [tex]\( x \)[/tex] on one side of the equation and constant terms on the other side. Subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ ax - x = ab + c \][/tex]
5. Factor [tex]\( x \)[/tex] out of the terms on the left side:
[tex]\[ x(a - 1) = ab + c \][/tex]
6. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by [tex]\( a - 1 \)[/tex]:
[tex]\[ x = \frac{ab + c}{a - 1} \][/tex]
So, the solution for [tex]\( x \)[/tex] in terms of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] is:
[tex]\[ x = \frac{ab + c}{a - 1} \][/tex]
Step-by-Step Solution:
1. Start with the given equation:
[tex]\[ a = \frac{x + c}{x - b} \][/tex]
2. To clear the fraction, multiply both sides of the equation by [tex]\( x - b \)[/tex]:
[tex]\[ a(x - b) = x + c \][/tex]
3. Distribute [tex]\( a \)[/tex] on the left-hand side:
[tex]\[ ax - ab = x + c \][/tex]
4. To isolate [tex]\( x \)[/tex], first get all terms involving [tex]\( x \)[/tex] on one side of the equation and constant terms on the other side. Subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ ax - x = ab + c \][/tex]
5. Factor [tex]\( x \)[/tex] out of the terms on the left side:
[tex]\[ x(a - 1) = ab + c \][/tex]
6. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by [tex]\( a - 1 \)[/tex]:
[tex]\[ x = \frac{ab + c}{a - 1} \][/tex]
So, the solution for [tex]\( x \)[/tex] in terms of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] is:
[tex]\[ x = \frac{ab + c}{a - 1} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.