Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's solve the equation [tex]\( a = \frac{x + c}{x - b} \)[/tex] to make [tex]\( x \)[/tex] the subject.
Step-by-Step Solution:
1. Start with the given equation:
[tex]\[ a = \frac{x + c}{x - b} \][/tex]
2. To clear the fraction, multiply both sides of the equation by [tex]\( x - b \)[/tex]:
[tex]\[ a(x - b) = x + c \][/tex]
3. Distribute [tex]\( a \)[/tex] on the left-hand side:
[tex]\[ ax - ab = x + c \][/tex]
4. To isolate [tex]\( x \)[/tex], first get all terms involving [tex]\( x \)[/tex] on one side of the equation and constant terms on the other side. Subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ ax - x = ab + c \][/tex]
5. Factor [tex]\( x \)[/tex] out of the terms on the left side:
[tex]\[ x(a - 1) = ab + c \][/tex]
6. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by [tex]\( a - 1 \)[/tex]:
[tex]\[ x = \frac{ab + c}{a - 1} \][/tex]
So, the solution for [tex]\( x \)[/tex] in terms of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] is:
[tex]\[ x = \frac{ab + c}{a - 1} \][/tex]
Step-by-Step Solution:
1. Start with the given equation:
[tex]\[ a = \frac{x + c}{x - b} \][/tex]
2. To clear the fraction, multiply both sides of the equation by [tex]\( x - b \)[/tex]:
[tex]\[ a(x - b) = x + c \][/tex]
3. Distribute [tex]\( a \)[/tex] on the left-hand side:
[tex]\[ ax - ab = x + c \][/tex]
4. To isolate [tex]\( x \)[/tex], first get all terms involving [tex]\( x \)[/tex] on one side of the equation and constant terms on the other side. Subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ ax - x = ab + c \][/tex]
5. Factor [tex]\( x \)[/tex] out of the terms on the left side:
[tex]\[ x(a - 1) = ab + c \][/tex]
6. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by [tex]\( a - 1 \)[/tex]:
[tex]\[ x = \frac{ab + c}{a - 1} \][/tex]
So, the solution for [tex]\( x \)[/tex] in terms of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] is:
[tex]\[ x = \frac{ab + c}{a - 1} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.