Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To justify why [tex]\( 7^{\frac{1}{3}} = \sqrt[3]{7} \)[/tex], we can use the properties of exponents and roots.
Step-by-Step Explanation:
1. Understanding the notation:
- [tex]\( a^{\frac{1}{n}} \)[/tex] represents the [tex]\( n \)[/tex]-th root of [tex]\( a \)[/tex].
- In this case, [tex]\( 7^{\frac{1}{3}} \)[/tex] implies the cube root of 7.
2. Exponent and root relationship:
- By definition, [tex]\( a^{\frac{1}{n}} = \sqrt[n]{a} \)[/tex], which means [tex]\( a \)[/tex] raised to the power of [tex]\( \frac{1}{n} \)[/tex] is equivalent to the [tex]\( n \)[/tex]-th root of [tex]\( a \)[/tex].
3. Application to the specific case:
- Here, [tex]\( a = 7 \)[/tex] and [tex]\( n = 3 \)[/tex].
- Therefore, [tex]\( 7^{\frac{1}{3}} = \sqrt[3]{7} \)[/tex].
So the equation that justifies this relationship is:
[tex]\[ 7^{\frac{1}{3}} = \sqrt[3]{7} \][/tex]
By understanding these properties and relationships, we can confidently say that [tex]\( 7^{\frac{1}{3}} \)[/tex] is indeed equal to [tex]\( \sqrt[3]{7} \)[/tex].
Step-by-Step Explanation:
1. Understanding the notation:
- [tex]\( a^{\frac{1}{n}} \)[/tex] represents the [tex]\( n \)[/tex]-th root of [tex]\( a \)[/tex].
- In this case, [tex]\( 7^{\frac{1}{3}} \)[/tex] implies the cube root of 7.
2. Exponent and root relationship:
- By definition, [tex]\( a^{\frac{1}{n}} = \sqrt[n]{a} \)[/tex], which means [tex]\( a \)[/tex] raised to the power of [tex]\( \frac{1}{n} \)[/tex] is equivalent to the [tex]\( n \)[/tex]-th root of [tex]\( a \)[/tex].
3. Application to the specific case:
- Here, [tex]\( a = 7 \)[/tex] and [tex]\( n = 3 \)[/tex].
- Therefore, [tex]\( 7^{\frac{1}{3}} = \sqrt[3]{7} \)[/tex].
So the equation that justifies this relationship is:
[tex]\[ 7^{\frac{1}{3}} = \sqrt[3]{7} \][/tex]
By understanding these properties and relationships, we can confidently say that [tex]\( 7^{\frac{1}{3}} \)[/tex] is indeed equal to [tex]\( \sqrt[3]{7} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.