Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To test the claim that the characteristics occur with the same frequency, we can use the Chi-square goodness-of-fit test.
Here is the step-by-step solution:
1. State the Observed Frequencies:
The observed frequencies for the characteristics are:
[tex]\[ \text{Observed } O = \{28, 30, 45, 48, 39, 39\} \][/tex]
2. Calculate the Expected Frequency:
Since we hypothesize that all characteristics occur with the same frequency, we first need to find the average (expected) frequency. The total number of observed frequencies is summed up:
[tex]\[ \text{Total} = 28 + 30 + 45 + 48 + 39 + 39 = 229 \][/tex]
There are 6 categories, so the expected frequency for each category is:
[tex]\[ E = \frac{\text{Total}}{6} = \frac{229}{6} \approx 38.167 \][/tex]
3. List the Expected Frequencies:
[tex]\[ \text{Expected } E = \{38.167, 38.167, 38.167, 38.167, 38.167, 38.167\} \][/tex]
4. Calculate the Chi-square Test Statistic:
The Chi-square test statistic is calculated using the formula:
[tex]\[ \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \][/tex]
Plugging the observed and expected frequencies into the formula:
[tex]\[ \chi^2 = \sum \frac{(28 - 38.167)^2}{38.167} + \frac{(30 - 38.167)^2}{38.167} + \frac{(45 - 38.167)^2}{38.167} + \frac{(48 - 38.167)^2}{38.167} + \frac{(39 - 38.167)^2}{38.167} + \frac{(39 - 38.167)^2}{38.167} \][/tex]
[tex]\[ \chi^2 = \frac{(28 - 38.167)^2}{38.167} + \frac{(30 - 38.167)^2}{38.167} + \frac{(45 - 38.167)^2}{38.167} + \frac{(48 - 38.167)^2}{38.167} + \frac{(39 - 38.167)^2}{38.167} + \frac{(39 - 38.167)^2}{38.167} \][/tex]
[tex]\[ \chi^2 \approx 8.249 \][/tex]
5. Conclusion:
The calculated value of the test statistic is approximately [tex]\(8.249\)[/tex]. Therefore, the correct answer is:
[tex]\[ \boxed{\chi^2 = 8.249} \][/tex]
Here is the step-by-step solution:
1. State the Observed Frequencies:
The observed frequencies for the characteristics are:
[tex]\[ \text{Observed } O = \{28, 30, 45, 48, 39, 39\} \][/tex]
2. Calculate the Expected Frequency:
Since we hypothesize that all characteristics occur with the same frequency, we first need to find the average (expected) frequency. The total number of observed frequencies is summed up:
[tex]\[ \text{Total} = 28 + 30 + 45 + 48 + 39 + 39 = 229 \][/tex]
There are 6 categories, so the expected frequency for each category is:
[tex]\[ E = \frac{\text{Total}}{6} = \frac{229}{6} \approx 38.167 \][/tex]
3. List the Expected Frequencies:
[tex]\[ \text{Expected } E = \{38.167, 38.167, 38.167, 38.167, 38.167, 38.167\} \][/tex]
4. Calculate the Chi-square Test Statistic:
The Chi-square test statistic is calculated using the formula:
[tex]\[ \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \][/tex]
Plugging the observed and expected frequencies into the formula:
[tex]\[ \chi^2 = \sum \frac{(28 - 38.167)^2}{38.167} + \frac{(30 - 38.167)^2}{38.167} + \frac{(45 - 38.167)^2}{38.167} + \frac{(48 - 38.167)^2}{38.167} + \frac{(39 - 38.167)^2}{38.167} + \frac{(39 - 38.167)^2}{38.167} \][/tex]
[tex]\[ \chi^2 = \frac{(28 - 38.167)^2}{38.167} + \frac{(30 - 38.167)^2}{38.167} + \frac{(45 - 38.167)^2}{38.167} + \frac{(48 - 38.167)^2}{38.167} + \frac{(39 - 38.167)^2}{38.167} + \frac{(39 - 38.167)^2}{38.167} \][/tex]
[tex]\[ \chi^2 \approx 8.249 \][/tex]
5. Conclusion:
The calculated value of the test statistic is approximately [tex]\(8.249\)[/tex]. Therefore, the correct answer is:
[tex]\[ \boxed{\chi^2 = 8.249} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.