Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the given expression, [tex]\( 4 \sqrt{2} + 5 \sqrt{4} \)[/tex], step by step to determine if the result is rational or irrational.
1. Evaluate the square roots:
- Calculate [tex]\( \sqrt{2} \)[/tex]. [tex]\(\sqrt{2} \approx 1.4142135623730951\)[/tex]. Since [tex]\(\sqrt{2}\)[/tex] is not a perfect square, it is an irrational number.
- Calculate [tex]\( \sqrt{4} \)[/tex]. [tex]\(\sqrt{4} = 2\)[/tex]. Since [tex]\(\sqrt{4}\)[/tex] is a perfect square, it is a rational number.
2. Multiply by the coefficients:
- Multiply [tex]\( 4 \)[/tex] by [tex]\( \sqrt{2} \)[/tex].
[tex]\[ 4 \sqrt{2} \approx 4 \times 1.4142135623730951 = 5.656854249492381 \][/tex]
- Multiply [tex]\( 5 \)[/tex] by [tex]\( \sqrt{4} \)[/tex].
[tex]\[ 5 \sqrt{4} = 5 \times 2 = 10 \][/tex]
3. Sum the results:
- Add the two products together.
[tex]\[ 4 \sqrt{2} + 5 \sqrt{4} \approx 5.656854249492381 + 10 = 15.65685424949238 \][/tex]
4. Determine the nature of the result:
- [tex]\( 4 \sqrt{2} \)[/tex] is an irrational number.
- [tex]\( 10 \)[/tex] is a rational number.
- Sum of an irrational number and a rational number is always an irrational number.
Therefore, the final answer [tex]\( 15.65685424949238 \)[/tex] is irrational because it includes an irrational component, specifically [tex]\( 4 \sqrt{2} \)[/tex].
1. Evaluate the square roots:
- Calculate [tex]\( \sqrt{2} \)[/tex]. [tex]\(\sqrt{2} \approx 1.4142135623730951\)[/tex]. Since [tex]\(\sqrt{2}\)[/tex] is not a perfect square, it is an irrational number.
- Calculate [tex]\( \sqrt{4} \)[/tex]. [tex]\(\sqrt{4} = 2\)[/tex]. Since [tex]\(\sqrt{4}\)[/tex] is a perfect square, it is a rational number.
2. Multiply by the coefficients:
- Multiply [tex]\( 4 \)[/tex] by [tex]\( \sqrt{2} \)[/tex].
[tex]\[ 4 \sqrt{2} \approx 4 \times 1.4142135623730951 = 5.656854249492381 \][/tex]
- Multiply [tex]\( 5 \)[/tex] by [tex]\( \sqrt{4} \)[/tex].
[tex]\[ 5 \sqrt{4} = 5 \times 2 = 10 \][/tex]
3. Sum the results:
- Add the two products together.
[tex]\[ 4 \sqrt{2} + 5 \sqrt{4} \approx 5.656854249492381 + 10 = 15.65685424949238 \][/tex]
4. Determine the nature of the result:
- [tex]\( 4 \sqrt{2} \)[/tex] is an irrational number.
- [tex]\( 10 \)[/tex] is a rational number.
- Sum of an irrational number and a rational number is always an irrational number.
Therefore, the final answer [tex]\( 15.65685424949238 \)[/tex] is irrational because it includes an irrational component, specifically [tex]\( 4 \sqrt{2} \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.