Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let’s solve this step-by-step to find the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] given the concentrations [tex]\([ \text{NO}_2 ] = [ \text{CO} ] = 0.495 \, \text{M}\)[/tex].
### Step 1: Determine the Reaction Orders
Given the rate law in the form:
[tex]\[ \text{rate} = k [\text{NO}_2]^x [\text{CO}]^y \][/tex]
We have the experimental data from 3 experiments:
1. Experiment 1:
- [tex]\([ \text{NO}_2 ]_1 = 0.263 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_1 = 0.826 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_1 = 1.44 \times 10^{-5} \, \text{M/s}\)[/tex]
2. Experiment 2:
- [tex]\([ \text{NO}_2 ]_2 = 0.263 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_2 = 0.413 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_2 = 1.44 \times 10^{-5} \, \text{M/s}\)[/tex]
3. Experiment 3:
- [tex]\([ \text{NO}_2 ]_3 = 0.526 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_3 = 0.413 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_3 = 5.76 \times 10^{-5} \, \text{M/s}\)[/tex]
#### Finding the order with respect to [tex]\( \text{CO} \)[/tex] [tex]\((y)\)[/tex]:
Comparing Experiment 1 and Experiment 2 where [tex]\([ \text{NO}_2 ]\)[/tex] is constant:
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{CO}]_2}{[\text{CO}]_1} \right)^y \][/tex]
[tex]\[ \frac{1.44 \times 10^{-5}}{1.44 \times 10^{-5}} = \left( \frac{0.413}{0.826} \right)^y \][/tex]
[tex]\[ 1 = \left( 0.5 \right)^y \][/tex]
Here, [tex]\( y \)[/tex] would be 0 (since the ratio results in 1, indicating a zero-order dependence on [tex]\( [\text{CO}] \)[/tex]).
#### Finding the order with respect to [tex]\( \text{NO}_2 \)[/tex] [tex]\((x)\)[/tex]:
Comparing Experiment 1 and Experiment 3 where [tex]\([ \text{CO} ]\)[/tex] is constant:
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}_2]_3}{[\text{NO}_2]_1} \right)^x \][/tex]
[tex]\[ \frac{5.76 \times 10^{-5}}{1.44 \times 10^{-5}} = \left( \frac{0.526}{0.263} \right)^x \][/tex]
[tex]\[ 4 = (2)^x \][/tex]
Here, [tex]\( x \)[/tex] would be close to 3.71 (since [tex]\( 2^{3.71} \approx 4 \)[/tex]).
### Step 2: Determine the Rate Constant [tex]\( k \)[/tex]
Using the data from Experiment 1 and the determined reaction orders:
[tex]\[ \text{rate}_1 = k [\text{NO}_2]_1^x [\text{CO}]_1^y \][/tex]
[tex]\[ 1.44 \times 10^{-5} = k (0.263)^{3.71} (0.826)^0 \][/tex]
[tex]\[ k = \frac{1.44 \times 10^{-5}}{(0.263)^{3.71}} k \approx 0.000625 \, \text{M}^{1-3.71} \text{s}^{-1} \][/tex]
### Step 3: Calculate the Rate of Appearance of [tex]\( \text{CO}_2 \)[/tex]
Given new concentrations [tex]\([ \text{NO}_2 ] = [ \text{CO} ] = 0.495 \, \text{M}\)[/tex], the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] is:
[tex]\[ \text{rate}_{\text{new}} = k [\text{NO}_2]^{x} [\text{CO}]^{y} \][/tex]
[tex]\[ \text{rate}_{\text{new}} = 0.000625 \times (0.495)^{3.71} \times (0.495)^0 \][/tex]
[tex]\[ \text{rate}_{\text{new}} = 0.000625 \times (0.495)^{3.71} \][/tex]
[tex]\[ \text{rate}_{\text{new}} \approx 4.60 \times 10^{-5} \, \text{M/s} \][/tex]
Therefore, the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] when [tex]\([ \text{NO}_2 ] = 0.495 \, \text{M}\)[/tex] and [tex]\([ \text{CO} ] = 0.495 \, \text{M}\)[/tex] is approximately [tex]\( 4.60 \times 10^{-5} \, \text{M/s} \)[/tex].
### Step 1: Determine the Reaction Orders
Given the rate law in the form:
[tex]\[ \text{rate} = k [\text{NO}_2]^x [\text{CO}]^y \][/tex]
We have the experimental data from 3 experiments:
1. Experiment 1:
- [tex]\([ \text{NO}_2 ]_1 = 0.263 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_1 = 0.826 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_1 = 1.44 \times 10^{-5} \, \text{M/s}\)[/tex]
2. Experiment 2:
- [tex]\([ \text{NO}_2 ]_2 = 0.263 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_2 = 0.413 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_2 = 1.44 \times 10^{-5} \, \text{M/s}\)[/tex]
3. Experiment 3:
- [tex]\([ \text{NO}_2 ]_3 = 0.526 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_3 = 0.413 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_3 = 5.76 \times 10^{-5} \, \text{M/s}\)[/tex]
#### Finding the order with respect to [tex]\( \text{CO} \)[/tex] [tex]\((y)\)[/tex]:
Comparing Experiment 1 and Experiment 2 where [tex]\([ \text{NO}_2 ]\)[/tex] is constant:
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{CO}]_2}{[\text{CO}]_1} \right)^y \][/tex]
[tex]\[ \frac{1.44 \times 10^{-5}}{1.44 \times 10^{-5}} = \left( \frac{0.413}{0.826} \right)^y \][/tex]
[tex]\[ 1 = \left( 0.5 \right)^y \][/tex]
Here, [tex]\( y \)[/tex] would be 0 (since the ratio results in 1, indicating a zero-order dependence on [tex]\( [\text{CO}] \)[/tex]).
#### Finding the order with respect to [tex]\( \text{NO}_2 \)[/tex] [tex]\((x)\)[/tex]:
Comparing Experiment 1 and Experiment 3 where [tex]\([ \text{CO} ]\)[/tex] is constant:
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}_2]_3}{[\text{NO}_2]_1} \right)^x \][/tex]
[tex]\[ \frac{5.76 \times 10^{-5}}{1.44 \times 10^{-5}} = \left( \frac{0.526}{0.263} \right)^x \][/tex]
[tex]\[ 4 = (2)^x \][/tex]
Here, [tex]\( x \)[/tex] would be close to 3.71 (since [tex]\( 2^{3.71} \approx 4 \)[/tex]).
### Step 2: Determine the Rate Constant [tex]\( k \)[/tex]
Using the data from Experiment 1 and the determined reaction orders:
[tex]\[ \text{rate}_1 = k [\text{NO}_2]_1^x [\text{CO}]_1^y \][/tex]
[tex]\[ 1.44 \times 10^{-5} = k (0.263)^{3.71} (0.826)^0 \][/tex]
[tex]\[ k = \frac{1.44 \times 10^{-5}}{(0.263)^{3.71}} k \approx 0.000625 \, \text{M}^{1-3.71} \text{s}^{-1} \][/tex]
### Step 3: Calculate the Rate of Appearance of [tex]\( \text{CO}_2 \)[/tex]
Given new concentrations [tex]\([ \text{NO}_2 ] = [ \text{CO} ] = 0.495 \, \text{M}\)[/tex], the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] is:
[tex]\[ \text{rate}_{\text{new}} = k [\text{NO}_2]^{x} [\text{CO}]^{y} \][/tex]
[tex]\[ \text{rate}_{\text{new}} = 0.000625 \times (0.495)^{3.71} \times (0.495)^0 \][/tex]
[tex]\[ \text{rate}_{\text{new}} = 0.000625 \times (0.495)^{3.71} \][/tex]
[tex]\[ \text{rate}_{\text{new}} \approx 4.60 \times 10^{-5} \, \text{M/s} \][/tex]
Therefore, the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] when [tex]\([ \text{NO}_2 ] = 0.495 \, \text{M}\)[/tex] and [tex]\([ \text{CO} ] = 0.495 \, \text{M}\)[/tex] is approximately [tex]\( 4.60 \times 10^{-5} \, \text{M/s} \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.