Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure! Let’s solve this step-by-step to find the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] given the concentrations [tex]\([ \text{NO}_2 ] = [ \text{CO} ] = 0.495 \, \text{M}\)[/tex].
### Step 1: Determine the Reaction Orders
Given the rate law in the form:
[tex]\[ \text{rate} = k [\text{NO}_2]^x [\text{CO}]^y \][/tex]
We have the experimental data from 3 experiments:
1. Experiment 1:
- [tex]\([ \text{NO}_2 ]_1 = 0.263 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_1 = 0.826 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_1 = 1.44 \times 10^{-5} \, \text{M/s}\)[/tex]
2. Experiment 2:
- [tex]\([ \text{NO}_2 ]_2 = 0.263 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_2 = 0.413 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_2 = 1.44 \times 10^{-5} \, \text{M/s}\)[/tex]
3. Experiment 3:
- [tex]\([ \text{NO}_2 ]_3 = 0.526 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_3 = 0.413 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_3 = 5.76 \times 10^{-5} \, \text{M/s}\)[/tex]
#### Finding the order with respect to [tex]\( \text{CO} \)[/tex] [tex]\((y)\)[/tex]:
Comparing Experiment 1 and Experiment 2 where [tex]\([ \text{NO}_2 ]\)[/tex] is constant:
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{CO}]_2}{[\text{CO}]_1} \right)^y \][/tex]
[tex]\[ \frac{1.44 \times 10^{-5}}{1.44 \times 10^{-5}} = \left( \frac{0.413}{0.826} \right)^y \][/tex]
[tex]\[ 1 = \left( 0.5 \right)^y \][/tex]
Here, [tex]\( y \)[/tex] would be 0 (since the ratio results in 1, indicating a zero-order dependence on [tex]\( [\text{CO}] \)[/tex]).
#### Finding the order with respect to [tex]\( \text{NO}_2 \)[/tex] [tex]\((x)\)[/tex]:
Comparing Experiment 1 and Experiment 3 where [tex]\([ \text{CO} ]\)[/tex] is constant:
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}_2]_3}{[\text{NO}_2]_1} \right)^x \][/tex]
[tex]\[ \frac{5.76 \times 10^{-5}}{1.44 \times 10^{-5}} = \left( \frac{0.526}{0.263} \right)^x \][/tex]
[tex]\[ 4 = (2)^x \][/tex]
Here, [tex]\( x \)[/tex] would be close to 3.71 (since [tex]\( 2^{3.71} \approx 4 \)[/tex]).
### Step 2: Determine the Rate Constant [tex]\( k \)[/tex]
Using the data from Experiment 1 and the determined reaction orders:
[tex]\[ \text{rate}_1 = k [\text{NO}_2]_1^x [\text{CO}]_1^y \][/tex]
[tex]\[ 1.44 \times 10^{-5} = k (0.263)^{3.71} (0.826)^0 \][/tex]
[tex]\[ k = \frac{1.44 \times 10^{-5}}{(0.263)^{3.71}} k \approx 0.000625 \, \text{M}^{1-3.71} \text{s}^{-1} \][/tex]
### Step 3: Calculate the Rate of Appearance of [tex]\( \text{CO}_2 \)[/tex]
Given new concentrations [tex]\([ \text{NO}_2 ] = [ \text{CO} ] = 0.495 \, \text{M}\)[/tex], the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] is:
[tex]\[ \text{rate}_{\text{new}} = k [\text{NO}_2]^{x} [\text{CO}]^{y} \][/tex]
[tex]\[ \text{rate}_{\text{new}} = 0.000625 \times (0.495)^{3.71} \times (0.495)^0 \][/tex]
[tex]\[ \text{rate}_{\text{new}} = 0.000625 \times (0.495)^{3.71} \][/tex]
[tex]\[ \text{rate}_{\text{new}} \approx 4.60 \times 10^{-5} \, \text{M/s} \][/tex]
Therefore, the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] when [tex]\([ \text{NO}_2 ] = 0.495 \, \text{M}\)[/tex] and [tex]\([ \text{CO} ] = 0.495 \, \text{M}\)[/tex] is approximately [tex]\( 4.60 \times 10^{-5} \, \text{M/s} \)[/tex].
### Step 1: Determine the Reaction Orders
Given the rate law in the form:
[tex]\[ \text{rate} = k [\text{NO}_2]^x [\text{CO}]^y \][/tex]
We have the experimental data from 3 experiments:
1. Experiment 1:
- [tex]\([ \text{NO}_2 ]_1 = 0.263 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_1 = 0.826 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_1 = 1.44 \times 10^{-5} \, \text{M/s}\)[/tex]
2. Experiment 2:
- [tex]\([ \text{NO}_2 ]_2 = 0.263 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_2 = 0.413 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_2 = 1.44 \times 10^{-5} \, \text{M/s}\)[/tex]
3. Experiment 3:
- [tex]\([ \text{NO}_2 ]_3 = 0.526 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_3 = 0.413 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_3 = 5.76 \times 10^{-5} \, \text{M/s}\)[/tex]
#### Finding the order with respect to [tex]\( \text{CO} \)[/tex] [tex]\((y)\)[/tex]:
Comparing Experiment 1 and Experiment 2 where [tex]\([ \text{NO}_2 ]\)[/tex] is constant:
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{CO}]_2}{[\text{CO}]_1} \right)^y \][/tex]
[tex]\[ \frac{1.44 \times 10^{-5}}{1.44 \times 10^{-5}} = \left( \frac{0.413}{0.826} \right)^y \][/tex]
[tex]\[ 1 = \left( 0.5 \right)^y \][/tex]
Here, [tex]\( y \)[/tex] would be 0 (since the ratio results in 1, indicating a zero-order dependence on [tex]\( [\text{CO}] \)[/tex]).
#### Finding the order with respect to [tex]\( \text{NO}_2 \)[/tex] [tex]\((x)\)[/tex]:
Comparing Experiment 1 and Experiment 3 where [tex]\([ \text{CO} ]\)[/tex] is constant:
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}_2]_3}{[\text{NO}_2]_1} \right)^x \][/tex]
[tex]\[ \frac{5.76 \times 10^{-5}}{1.44 \times 10^{-5}} = \left( \frac{0.526}{0.263} \right)^x \][/tex]
[tex]\[ 4 = (2)^x \][/tex]
Here, [tex]\( x \)[/tex] would be close to 3.71 (since [tex]\( 2^{3.71} \approx 4 \)[/tex]).
### Step 2: Determine the Rate Constant [tex]\( k \)[/tex]
Using the data from Experiment 1 and the determined reaction orders:
[tex]\[ \text{rate}_1 = k [\text{NO}_2]_1^x [\text{CO}]_1^y \][/tex]
[tex]\[ 1.44 \times 10^{-5} = k (0.263)^{3.71} (0.826)^0 \][/tex]
[tex]\[ k = \frac{1.44 \times 10^{-5}}{(0.263)^{3.71}} k \approx 0.000625 \, \text{M}^{1-3.71} \text{s}^{-1} \][/tex]
### Step 3: Calculate the Rate of Appearance of [tex]\( \text{CO}_2 \)[/tex]
Given new concentrations [tex]\([ \text{NO}_2 ] = [ \text{CO} ] = 0.495 \, \text{M}\)[/tex], the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] is:
[tex]\[ \text{rate}_{\text{new}} = k [\text{NO}_2]^{x} [\text{CO}]^{y} \][/tex]
[tex]\[ \text{rate}_{\text{new}} = 0.000625 \times (0.495)^{3.71} \times (0.495)^0 \][/tex]
[tex]\[ \text{rate}_{\text{new}} = 0.000625 \times (0.495)^{3.71} \][/tex]
[tex]\[ \text{rate}_{\text{new}} \approx 4.60 \times 10^{-5} \, \text{M/s} \][/tex]
Therefore, the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] when [tex]\([ \text{NO}_2 ] = 0.495 \, \text{M}\)[/tex] and [tex]\([ \text{CO} ] = 0.495 \, \text{M}\)[/tex] is approximately [tex]\( 4.60 \times 10^{-5} \, \text{M/s} \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.