Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

The rate of the reaction [tex]\( NO_2 (g) + CO (g) \rightarrow NO (g) + CO_2 (g) \)[/tex] was determined in three experiments at [tex]\( 225^{\circ} \text{C} \)[/tex].

The results are given in the following table:

| Experiment | [tex]\([NO_2]_0\)[/tex] (M) | [tex]\([CO]_0\)[/tex] (M) | Initial Rate [tex]\(-\Delta [NO_2]/\Delta t\)[/tex] [tex]\((M/s)\)[/tex] |
|------------|-------------------|----------------|--------------------------------------------|
| 1 | 0.263 | 0.826 | [tex]\( 1.44 \times 10^{-5} \)[/tex] |
| 2 | 0.263 | 0.413 | [tex]\( 1.44 \times 10^{-5} \)[/tex] |
| 3 | 0.526 | 0.413 | [tex]\( 5.76 \times 10^{-5} \)[/tex] |

Calculate the rate of appearance of [tex]\( CO_2 \)[/tex] when [tex]\( [NO_2] = [CO] = 0.495 \, M \)[/tex].

[tex]\[ \text{Rate of appearance of } CO_2 = \quad \text{M/s} \][/tex]


Sagot :

Sure! Let’s solve this step-by-step to find the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] given the concentrations [tex]\([ \text{NO}_2 ] = [ \text{CO} ] = 0.495 \, \text{M}\)[/tex].

### Step 1: Determine the Reaction Orders

Given the rate law in the form:
[tex]\[ \text{rate} = k [\text{NO}_2]^x [\text{CO}]^y \][/tex]

We have the experimental data from 3 experiments:

1. Experiment 1:
- [tex]\([ \text{NO}_2 ]_1 = 0.263 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_1 = 0.826 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_1 = 1.44 \times 10^{-5} \, \text{M/s}\)[/tex]

2. Experiment 2:
- [tex]\([ \text{NO}_2 ]_2 = 0.263 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_2 = 0.413 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_2 = 1.44 \times 10^{-5} \, \text{M/s}\)[/tex]

3. Experiment 3:
- [tex]\([ \text{NO}_2 ]_3 = 0.526 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_3 = 0.413 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_3 = 5.76 \times 10^{-5} \, \text{M/s}\)[/tex]

#### Finding the order with respect to [tex]\( \text{CO} \)[/tex] [tex]\((y)\)[/tex]:

Comparing Experiment 1 and Experiment 2 where [tex]\([ \text{NO}_2 ]\)[/tex] is constant:
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{CO}]_2}{[\text{CO}]_1} \right)^y \][/tex]

[tex]\[ \frac{1.44 \times 10^{-5}}{1.44 \times 10^{-5}} = \left( \frac{0.413}{0.826} \right)^y \][/tex]

[tex]\[ 1 = \left( 0.5 \right)^y \][/tex]

Here, [tex]\( y \)[/tex] would be 0 (since the ratio results in 1, indicating a zero-order dependence on [tex]\( [\text{CO}] \)[/tex]).

#### Finding the order with respect to [tex]\( \text{NO}_2 \)[/tex] [tex]\((x)\)[/tex]:

Comparing Experiment 1 and Experiment 3 where [tex]\([ \text{CO} ]\)[/tex] is constant:
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}_2]_3}{[\text{NO}_2]_1} \right)^x \][/tex]

[tex]\[ \frac{5.76 \times 10^{-5}}{1.44 \times 10^{-5}} = \left( \frac{0.526}{0.263} \right)^x \][/tex]

[tex]\[ 4 = (2)^x \][/tex]

Here, [tex]\( x \)[/tex] would be close to 3.71 (since [tex]\( 2^{3.71} \approx 4 \)[/tex]).

### Step 2: Determine the Rate Constant [tex]\( k \)[/tex]

Using the data from Experiment 1 and the determined reaction orders:

[tex]\[ \text{rate}_1 = k [\text{NO}_2]_1^x [\text{CO}]_1^y \][/tex]
[tex]\[ 1.44 \times 10^{-5} = k (0.263)^{3.71} (0.826)^0 \][/tex]

[tex]\[ k = \frac{1.44 \times 10^{-5}}{(0.263)^{3.71}} k \approx 0.000625 \, \text{M}^{1-3.71} \text{s}^{-1} \][/tex]

### Step 3: Calculate the Rate of Appearance of [tex]\( \text{CO}_2 \)[/tex]

Given new concentrations [tex]\([ \text{NO}_2 ] = [ \text{CO} ] = 0.495 \, \text{M}\)[/tex], the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] is:
[tex]\[ \text{rate}_{\text{new}} = k [\text{NO}_2]^{x} [\text{CO}]^{y} \][/tex]
[tex]\[ \text{rate}_{\text{new}} = 0.000625 \times (0.495)^{3.71} \times (0.495)^0 \][/tex]
[tex]\[ \text{rate}_{\text{new}} = 0.000625 \times (0.495)^{3.71} \][/tex]
[tex]\[ \text{rate}_{\text{new}} \approx 4.60 \times 10^{-5} \, \text{M/s} \][/tex]

Therefore, the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] when [tex]\([ \text{NO}_2 ] = 0.495 \, \text{M}\)[/tex] and [tex]\([ \text{CO} ] = 0.495 \, \text{M}\)[/tex] is approximately [tex]\( 4.60 \times 10^{-5} \, \text{M/s} \)[/tex].