Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure! Let’s solve this step-by-step to find the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] given the concentrations [tex]\([ \text{NO}_2 ] = [ \text{CO} ] = 0.495 \, \text{M}\)[/tex].
### Step 1: Determine the Reaction Orders
Given the rate law in the form:
[tex]\[ \text{rate} = k [\text{NO}_2]^x [\text{CO}]^y \][/tex]
We have the experimental data from 3 experiments:
1. Experiment 1:
- [tex]\([ \text{NO}_2 ]_1 = 0.263 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_1 = 0.826 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_1 = 1.44 \times 10^{-5} \, \text{M/s}\)[/tex]
2. Experiment 2:
- [tex]\([ \text{NO}_2 ]_2 = 0.263 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_2 = 0.413 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_2 = 1.44 \times 10^{-5} \, \text{M/s}\)[/tex]
3. Experiment 3:
- [tex]\([ \text{NO}_2 ]_3 = 0.526 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_3 = 0.413 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_3 = 5.76 \times 10^{-5} \, \text{M/s}\)[/tex]
#### Finding the order with respect to [tex]\( \text{CO} \)[/tex] [tex]\((y)\)[/tex]:
Comparing Experiment 1 and Experiment 2 where [tex]\([ \text{NO}_2 ]\)[/tex] is constant:
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{CO}]_2}{[\text{CO}]_1} \right)^y \][/tex]
[tex]\[ \frac{1.44 \times 10^{-5}}{1.44 \times 10^{-5}} = \left( \frac{0.413}{0.826} \right)^y \][/tex]
[tex]\[ 1 = \left( 0.5 \right)^y \][/tex]
Here, [tex]\( y \)[/tex] would be 0 (since the ratio results in 1, indicating a zero-order dependence on [tex]\( [\text{CO}] \)[/tex]).
#### Finding the order with respect to [tex]\( \text{NO}_2 \)[/tex] [tex]\((x)\)[/tex]:
Comparing Experiment 1 and Experiment 3 where [tex]\([ \text{CO} ]\)[/tex] is constant:
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}_2]_3}{[\text{NO}_2]_1} \right)^x \][/tex]
[tex]\[ \frac{5.76 \times 10^{-5}}{1.44 \times 10^{-5}} = \left( \frac{0.526}{0.263} \right)^x \][/tex]
[tex]\[ 4 = (2)^x \][/tex]
Here, [tex]\( x \)[/tex] would be close to 3.71 (since [tex]\( 2^{3.71} \approx 4 \)[/tex]).
### Step 2: Determine the Rate Constant [tex]\( k \)[/tex]
Using the data from Experiment 1 and the determined reaction orders:
[tex]\[ \text{rate}_1 = k [\text{NO}_2]_1^x [\text{CO}]_1^y \][/tex]
[tex]\[ 1.44 \times 10^{-5} = k (0.263)^{3.71} (0.826)^0 \][/tex]
[tex]\[ k = \frac{1.44 \times 10^{-5}}{(0.263)^{3.71}} k \approx 0.000625 \, \text{M}^{1-3.71} \text{s}^{-1} \][/tex]
### Step 3: Calculate the Rate of Appearance of [tex]\( \text{CO}_2 \)[/tex]
Given new concentrations [tex]\([ \text{NO}_2 ] = [ \text{CO} ] = 0.495 \, \text{M}\)[/tex], the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] is:
[tex]\[ \text{rate}_{\text{new}} = k [\text{NO}_2]^{x} [\text{CO}]^{y} \][/tex]
[tex]\[ \text{rate}_{\text{new}} = 0.000625 \times (0.495)^{3.71} \times (0.495)^0 \][/tex]
[tex]\[ \text{rate}_{\text{new}} = 0.000625 \times (0.495)^{3.71} \][/tex]
[tex]\[ \text{rate}_{\text{new}} \approx 4.60 \times 10^{-5} \, \text{M/s} \][/tex]
Therefore, the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] when [tex]\([ \text{NO}_2 ] = 0.495 \, \text{M}\)[/tex] and [tex]\([ \text{CO} ] = 0.495 \, \text{M}\)[/tex] is approximately [tex]\( 4.60 \times 10^{-5} \, \text{M/s} \)[/tex].
### Step 1: Determine the Reaction Orders
Given the rate law in the form:
[tex]\[ \text{rate} = k [\text{NO}_2]^x [\text{CO}]^y \][/tex]
We have the experimental data from 3 experiments:
1. Experiment 1:
- [tex]\([ \text{NO}_2 ]_1 = 0.263 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_1 = 0.826 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_1 = 1.44 \times 10^{-5} \, \text{M/s}\)[/tex]
2. Experiment 2:
- [tex]\([ \text{NO}_2 ]_2 = 0.263 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_2 = 0.413 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_2 = 1.44 \times 10^{-5} \, \text{M/s}\)[/tex]
3. Experiment 3:
- [tex]\([ \text{NO}_2 ]_3 = 0.526 \, \text{M}\)[/tex]
- [tex]\([ \text{CO} ]_3 = 0.413 \, \text{M}\)[/tex]
- [tex]\(\text{rate}_3 = 5.76 \times 10^{-5} \, \text{M/s}\)[/tex]
#### Finding the order with respect to [tex]\( \text{CO} \)[/tex] [tex]\((y)\)[/tex]:
Comparing Experiment 1 and Experiment 2 where [tex]\([ \text{NO}_2 ]\)[/tex] is constant:
[tex]\[ \frac{\text{rate}_2}{\text{rate}_1} = \left( \frac{[\text{CO}]_2}{[\text{CO}]_1} \right)^y \][/tex]
[tex]\[ \frac{1.44 \times 10^{-5}}{1.44 \times 10^{-5}} = \left( \frac{0.413}{0.826} \right)^y \][/tex]
[tex]\[ 1 = \left( 0.5 \right)^y \][/tex]
Here, [tex]\( y \)[/tex] would be 0 (since the ratio results in 1, indicating a zero-order dependence on [tex]\( [\text{CO}] \)[/tex]).
#### Finding the order with respect to [tex]\( \text{NO}_2 \)[/tex] [tex]\((x)\)[/tex]:
Comparing Experiment 1 and Experiment 3 where [tex]\([ \text{CO} ]\)[/tex] is constant:
[tex]\[ \frac{\text{rate}_3}{\text{rate}_1} = \left( \frac{[\text{NO}_2]_3}{[\text{NO}_2]_1} \right)^x \][/tex]
[tex]\[ \frac{5.76 \times 10^{-5}}{1.44 \times 10^{-5}} = \left( \frac{0.526}{0.263} \right)^x \][/tex]
[tex]\[ 4 = (2)^x \][/tex]
Here, [tex]\( x \)[/tex] would be close to 3.71 (since [tex]\( 2^{3.71} \approx 4 \)[/tex]).
### Step 2: Determine the Rate Constant [tex]\( k \)[/tex]
Using the data from Experiment 1 and the determined reaction orders:
[tex]\[ \text{rate}_1 = k [\text{NO}_2]_1^x [\text{CO}]_1^y \][/tex]
[tex]\[ 1.44 \times 10^{-5} = k (0.263)^{3.71} (0.826)^0 \][/tex]
[tex]\[ k = \frac{1.44 \times 10^{-5}}{(0.263)^{3.71}} k \approx 0.000625 \, \text{M}^{1-3.71} \text{s}^{-1} \][/tex]
### Step 3: Calculate the Rate of Appearance of [tex]\( \text{CO}_2 \)[/tex]
Given new concentrations [tex]\([ \text{NO}_2 ] = [ \text{CO} ] = 0.495 \, \text{M}\)[/tex], the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] is:
[tex]\[ \text{rate}_{\text{new}} = k [\text{NO}_2]^{x} [\text{CO}]^{y} \][/tex]
[tex]\[ \text{rate}_{\text{new}} = 0.000625 \times (0.495)^{3.71} \times (0.495)^0 \][/tex]
[tex]\[ \text{rate}_{\text{new}} = 0.000625 \times (0.495)^{3.71} \][/tex]
[tex]\[ \text{rate}_{\text{new}} \approx 4.60 \times 10^{-5} \, \text{M/s} \][/tex]
Therefore, the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] when [tex]\([ \text{NO}_2 ] = 0.495 \, \text{M}\)[/tex] and [tex]\([ \text{CO} ] = 0.495 \, \text{M}\)[/tex] is approximately [tex]\( 4.60 \times 10^{-5} \, \text{M/s} \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.