Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Alright, let's rewrite the given expressions in terms of radical expressions by making use of the properties of exponents and radicals.
First, let's simplify the rational expression:
[tex]$ \frac{y^{\frac{3}{4}}}{y^{\frac{1}{2}}} $[/tex]
We start by using the properties of exponents. When dividing two expressions with the same base, we subtract the exponents:
[tex]$ y^{\frac{3}{4}} \div y^{\frac{1}{2}} = y^{\frac{3}{4} - \frac{1}{2}} $[/tex]
To perform the subtraction, we need a common denominator. The common denominator for [tex]\(4\)[/tex] and [tex]\(2\)[/tex] is [tex]\(4\)[/tex]:
[tex]$ \frac{3}{4} - \frac{1}{2} = \frac{3}{4} - \frac{2}{4} = \frac{3 - 2}{4} = \frac{1}{4} $[/tex]
So, the simplified expression is:
[tex]$ y^{\frac{1}{4}} $[/tex]
Next, we convert [tex]\(y^{\frac{1}{4}}\)[/tex] to a radical expression. By definition, the exponent [tex]\( \frac{1}{4} \)[/tex] means we take the fourth root:
[tex]$ y^{\frac{1}{4}} = \sqrt[4]{y} $[/tex]
For the second part, consider the expression:
[tex]$ \sqrt[8]{y^3} $[/tex]
The radical expression [tex]\(\sqrt[8]{y^3}\)[/tex] can be rewritten using rational exponents. The [tex]\(8\)[/tex]th root of [tex]\(y^3\)[/tex] is the same as raising [tex]\(y^3\)[/tex] to the power of [tex]\(\frac{1}{8}\)[/tex]:
[tex]$ \sqrt[8]{y^3} = (y^3)^{\frac{1}{8}} $[/tex]
We can apply the exponent rule [tex]\((a^m)^n = a^{mn}\)[/tex] here:
[tex]$ (y^3)^{\frac{1}{8}} = y^{3 \cdot \frac{1}{8}} = y^{\frac{3}{8}} $[/tex]
In summary, our simplified expressions are:
1. The given rational exponent [tex]\(\frac{y^{\frac{3}{4}}}{y^{\frac{1}{2}}}\)[/tex] simplifies to [tex]\(y^{\frac{1}{4}}\)[/tex], which is equivalent to [tex]\(\sqrt[4]{y}\)[/tex].
2. The radical expression [tex]\(\sqrt[8]{y^3}\)[/tex] is the same as [tex]\((y^3)^{\frac{1}{8}}\)[/tex] and can be condensed as [tex]\(y^{\frac{3}{8}}\)[/tex].
Thus, the full answer, rephrased, is:
1. [tex]\(\frac{y^{\frac{3}{4}}}{y^{\frac{1}{2}}} = y^{\frac{1}{4}}\)[/tex], and as a radical expression, it is [tex]\(\sqrt[4]{y}\)[/tex].
2. [tex]\(\sqrt[8]{y^3} = (y^3)^{\frac{1}{8}} = y^{\frac{3}{8}}\)[/tex].
First, let's simplify the rational expression:
[tex]$ \frac{y^{\frac{3}{4}}}{y^{\frac{1}{2}}} $[/tex]
We start by using the properties of exponents. When dividing two expressions with the same base, we subtract the exponents:
[tex]$ y^{\frac{3}{4}} \div y^{\frac{1}{2}} = y^{\frac{3}{4} - \frac{1}{2}} $[/tex]
To perform the subtraction, we need a common denominator. The common denominator for [tex]\(4\)[/tex] and [tex]\(2\)[/tex] is [tex]\(4\)[/tex]:
[tex]$ \frac{3}{4} - \frac{1}{2} = \frac{3}{4} - \frac{2}{4} = \frac{3 - 2}{4} = \frac{1}{4} $[/tex]
So, the simplified expression is:
[tex]$ y^{\frac{1}{4}} $[/tex]
Next, we convert [tex]\(y^{\frac{1}{4}}\)[/tex] to a radical expression. By definition, the exponent [tex]\( \frac{1}{4} \)[/tex] means we take the fourth root:
[tex]$ y^{\frac{1}{4}} = \sqrt[4]{y} $[/tex]
For the second part, consider the expression:
[tex]$ \sqrt[8]{y^3} $[/tex]
The radical expression [tex]\(\sqrt[8]{y^3}\)[/tex] can be rewritten using rational exponents. The [tex]\(8\)[/tex]th root of [tex]\(y^3\)[/tex] is the same as raising [tex]\(y^3\)[/tex] to the power of [tex]\(\frac{1}{8}\)[/tex]:
[tex]$ \sqrt[8]{y^3} = (y^3)^{\frac{1}{8}} $[/tex]
We can apply the exponent rule [tex]\((a^m)^n = a^{mn}\)[/tex] here:
[tex]$ (y^3)^{\frac{1}{8}} = y^{3 \cdot \frac{1}{8}} = y^{\frac{3}{8}} $[/tex]
In summary, our simplified expressions are:
1. The given rational exponent [tex]\(\frac{y^{\frac{3}{4}}}{y^{\frac{1}{2}}}\)[/tex] simplifies to [tex]\(y^{\frac{1}{4}}\)[/tex], which is equivalent to [tex]\(\sqrt[4]{y}\)[/tex].
2. The radical expression [tex]\(\sqrt[8]{y^3}\)[/tex] is the same as [tex]\((y^3)^{\frac{1}{8}}\)[/tex] and can be condensed as [tex]\(y^{\frac{3}{8}}\)[/tex].
Thus, the full answer, rephrased, is:
1. [tex]\(\frac{y^{\frac{3}{4}}}{y^{\frac{1}{2}}} = y^{\frac{1}{4}}\)[/tex], and as a radical expression, it is [tex]\(\sqrt[4]{y}\)[/tex].
2. [tex]\(\sqrt[8]{y^3} = (y^3)^{\frac{1}{8}} = y^{\frac{3}{8}}\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.