Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's break down the question into three parts and solve each one step by step:
### Part 1: Determine the rate law for this reaction
The rate law expresses the rate [tex]\( R \)[/tex] of the reaction in terms of the concentration of the reactants raised to a power, typically represented as:
[tex]\[ R = k[\text{NO}_2][\text{CO}] \][/tex]
In this problem, the rate law for the reaction is given as:
[tex]\[ \text{Rate} = k[\text{NO}_2][\text{CO}] \][/tex]
### Part 2: Calculate the value of the rate constant [tex]\( k \)[/tex] at [tex]\( 225^{\circ} C \)[/tex]
The rate constant [tex]\( k \)[/tex] is provided in this problem. The value of [tex]\( k \)[/tex] at [tex]\( 225^{\circ} C \)[/tex] is:
[tex]\[ k = 0.00005 \, M^{-1} s^{-1} \][/tex]
### Part 3: Calculate the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] when [tex]\([ \text{NO}_2 ] = [ \text{CO} ] = 0.510 \, M \)[/tex]
We use the rate law determined in Part 1 to find the rate of the reaction:
[tex]\[ \text{Rate} = k[\text{NO}_2][\text{CO}] \][/tex]
Given:
- [tex]\( k = 0.00005 \, M^{-1} s^{-1} \)[/tex]
- [tex]\([ \text{NO}_2 ] = 0.510 \, M \)[/tex]
- [tex]\([ \text{CO} ] = 0.510 \, M \)[/tex]
We substitute these values into the rate equation:
[tex]\[ \text{Rate} = 0.00005 \times 0.510 \times 0.510 \][/tex]
The rate of appearance of [tex]\( \text{CO}_2 \)[/tex] is:
[tex]\[ \text{Rate} \approx 1.3005 \times 10^{-5} \, M/s \][/tex]
Therefore, the detailed steps to arrive at the rate of appearance of [tex]\( \text{CO}_2 \)[/tex], are as follows:
1. Substitute [tex]\([ \text{NO}_2 ] = 0.510 \, M \)[/tex] and [tex]\([ \text{CO} ] = 0.510 \, M \)[/tex] into the rate law.
2. Multiply the rate constant [tex]\( k \)[/tex] by the concentrations of [tex]\([ \text{NO}_2 ]\)[/tex] and [tex]\([ \text{CO} ] \)[/tex].
3. Calculate the product to obtain the rate of appearance of [tex]\( \text{CO}_2 \)[/tex].
Thus, the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] when both [tex]\([ \text{NO}_2 ]\)[/tex] and [tex]\([ \text{CO} ]\)[/tex] are at [tex]\( 0.510 \, M \)[/tex] is [tex]\( 1.3005 \times 10^{-5} \, M/s \)[/tex].
### Part 1: Determine the rate law for this reaction
The rate law expresses the rate [tex]\( R \)[/tex] of the reaction in terms of the concentration of the reactants raised to a power, typically represented as:
[tex]\[ R = k[\text{NO}_2][\text{CO}] \][/tex]
In this problem, the rate law for the reaction is given as:
[tex]\[ \text{Rate} = k[\text{NO}_2][\text{CO}] \][/tex]
### Part 2: Calculate the value of the rate constant [tex]\( k \)[/tex] at [tex]\( 225^{\circ} C \)[/tex]
The rate constant [tex]\( k \)[/tex] is provided in this problem. The value of [tex]\( k \)[/tex] at [tex]\( 225^{\circ} C \)[/tex] is:
[tex]\[ k = 0.00005 \, M^{-1} s^{-1} \][/tex]
### Part 3: Calculate the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] when [tex]\([ \text{NO}_2 ] = [ \text{CO} ] = 0.510 \, M \)[/tex]
We use the rate law determined in Part 1 to find the rate of the reaction:
[tex]\[ \text{Rate} = k[\text{NO}_2][\text{CO}] \][/tex]
Given:
- [tex]\( k = 0.00005 \, M^{-1} s^{-1} \)[/tex]
- [tex]\([ \text{NO}_2 ] = 0.510 \, M \)[/tex]
- [tex]\([ \text{CO} ] = 0.510 \, M \)[/tex]
We substitute these values into the rate equation:
[tex]\[ \text{Rate} = 0.00005 \times 0.510 \times 0.510 \][/tex]
The rate of appearance of [tex]\( \text{CO}_2 \)[/tex] is:
[tex]\[ \text{Rate} \approx 1.3005 \times 10^{-5} \, M/s \][/tex]
Therefore, the detailed steps to arrive at the rate of appearance of [tex]\( \text{CO}_2 \)[/tex], are as follows:
1. Substitute [tex]\([ \text{NO}_2 ] = 0.510 \, M \)[/tex] and [tex]\([ \text{CO} ] = 0.510 \, M \)[/tex] into the rate law.
2. Multiply the rate constant [tex]\( k \)[/tex] by the concentrations of [tex]\([ \text{NO}_2 ]\)[/tex] and [tex]\([ \text{CO} ] \)[/tex].
3. Calculate the product to obtain the rate of appearance of [tex]\( \text{CO}_2 \)[/tex].
Thus, the rate of appearance of [tex]\( \text{CO}_2 \)[/tex] when both [tex]\([ \text{NO}_2 ]\)[/tex] and [tex]\([ \text{CO} ]\)[/tex] are at [tex]\( 0.510 \, M \)[/tex] is [tex]\( 1.3005 \times 10^{-5} \, M/s \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.